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ABSTRACT
The random forest algorithm is one of themost popular and commonly used algorithms
for classification and regression tasks. It combines the output of multiple decision trees
to form a single result. Random forest algorithms demonstrate the highest accuracy on
tabular data compared to other algorithms in various applications. However, random
forests and, more precisely, decision trees, are usually built with the application of
classic Shannon entropy. In this article, we consider the potential of deformed entropies,
which are successfully used in the field of complex systems, to increase the prediction
accuracy of random forest algorithms.We develop and introduce the information gains
based on Renyi, Tsallis, and Sharma-Mittal entropies for classification and regression
random forests. We test the proposed algorithm modifications on six benchmark
datasets: three for classification and three for regression problems. For classification
problems, the application of Renyi entropy allows us to improve the random forest
prediction accuracy by 19–96% in dependence on the dataset, Tsallis entropy improves
the accuracy by 20–98%, and Sharma-Mittal entropy improves accuracy by 22–111%
compared to the classical algorithm. For regression problems, the application of
deformed entropies improves the prediction by 2–23% in terms of R2 in dependence
on the dataset.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Data Science
Keywords Random forest, Tsallis entropy, Renyi entropy, Sharma-Mittal entropy, Classification,
Regression

INTRODUCTION
The world has experienced an increase in the amount and variety of available data, which
needs to be analyzed. This has given rise to universal algorithms that may, in some sense,
select data attributes, discard background noise, and give the analyst a comprehensible
summary for understanding complex datasets. To better address this need, a decision tree
algorithm was proposed. One of the earliest works on decision trees is the book by Breiman
(1984), where the authors describe the basic concepts and algorithms of decision trees
and their application for classification and regression problems. In the 1990s, researchers
found that using ensembles produced better prediction accuracy than single weak learners.
One of the earliest works on ensemble methods is the boosting algorithm (Schapire, 1990),
which discusses how iterative re-weighting of training data can be used to construct
a strong classifier as a linear combination of a large number of weak classifiers. The
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combination of the decision tree concept and ensemble methods led to the emergence of
a random forest, that is, an ensemble of trained decision trees. Breiman’s works (Breiman,
1996; Breiman, 2001) popularized the use of the random forest. In these works, the
author introduced bagging into the random forest algorithm, i.e., random sampling
of training data, which, in turn, improved the prediction accuracy of random forest.
Random forest algorithms have become widespread due to their simplicity and relatively
high prediction accuracy in a broad class of problems. In addition, these algorithms
have a small number of parameters and are easily parallelizable (Biau & Scornet, 2016).
For example, the random forest methodology has been successfully used in molecular
informatics (Svetnik et al., 2003), ecology (Prasad, Iverson & Liaw, 2006; Cutler et al.,
2007), hydrology (Tyralis, Papacharalampous & Langousis, 2019), medicine (Sarica, Cerasa
& Quattrone, 2017), genetics (Chen & Ishwaran, 2012), 3D object recognition (Shotton
et al., 2013), bioinformatics (Díaz-Uriarte & de Andrés, 2006; Qi, 2012), and for text
tone analysis (sentiment analysis) (Stephenie, Warsito, Budi & Prahutama, Alan, 2020;
Karthika, Murugeswari & Manoranjithem, 2019). In addition, in Howard & Bowles (2012),
the authors postulate that ensembles of decision trees, i.e., random forests, are the most
successful universal and multipurpose algorithms of our time. Grinsztajn, Oyallon &
Varoquaux (2022) demonstrate that random forest algorithms outperform neural networks
on tabular data.

Despite the popularity and broad application of random forests, we would like to note
that these algorithms are based on the use of information gain with classical Shannon
entropy (Breiman, 2001; Criminisi, Shotton & Konukoglu, 2012). However, it is known that
complex data are better described with nonclassical deformed entropies. Such data emerge
in different fields of knowledge, for instance, in physical and biological systems, as well
as in language models and the behavior of financial markets. For example, Tsallis (2009)
described a general approach to modification of mathematical formalism for describing
non-extensive physical systems based on a combination of different entropies. Beck (2009)
presented a general overview of the most frequently used parameterized entropies in
the scientific literature. Clauset, Shalizi & Newman (2009) proposed the mathematical
formalism for describing power-law distributions in data of different types (distribution
of words in English-language texts, the degrees of proteins in the partially known protein-
interaction network, the number of species per genus of mammals and others). Let us note
that this type of distribution naturally follows from Renyi entropy (Bashkirov & Vityazev,
2007). Bohorquez et al. (2009) considered examples of complex data generated by different
human activities, including the behavior of financial markets. For instance, Li, He & Song
(2016) considered the behavior of the Chinese market based on three types of entropy:
Shannon, Renyi, and Tsallis entropy. Thus, parameterized entropies are actively used in
the analysis of different types of data.

Recent studies by Gajowniczek, Zabkowski & Orłowski (2015), and Maszczyk & Duch
(2006) show that the application of nonclassical parameterized entropy can lead to
promising results and increase the prediction accuracy of decision trees. To the best
of our knowledge, one-parametric Renyi and Tsallis entropies were applied only for
the classification tasks. Moreover, deformed entropies were used and tested only for
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constructing individual decision trees, but not random forests. Thus, this work aims to
partially fill this gap and test nonclassical entropies’ application to both classification and
regression tasks in random forest algorithms. Moreover, we considered one-parametric
entropies such as Renyi and Tsallis as well as two-parametric Sharma-Mittal entropy. For
the classification tasks, we estimated the results in terms of accuracy and F1 scores. For the
regression tasks, we calculated mean squared error, mean absolute error, and coefficient
of determination to evaluate the effect of applying nonclassical entropies compared to
the classical algorithm (namely, Breiman’s random forest algorithm Breiman, 2001). We
conducted experiments on three datasets for the classification task and three datasets for
the regression task. The datasets originate from different fields (such as human activity
recognition, brain activity, physics, finances, and health) and have different sizes.

Here, we proposed a modification of the random forest algorithm, in which the splitting
procedure is modified based on the application of parametrized entropies such as Renyi,
Tsallis, and Sharma–Mitall entropy. This approach is a generalization of the random forest
algorithm since Shannon entropy is a special case of Renyi and Tsallis entropies, which,
in turn, are special cases of Sharma-Mittal entropy. Parameterized entropies allow us to
add additional parameters to effectively configure the random forest algorithm for various
patterns in complex data, and our experiments demonstrate that the introduction of
parameterized entropies significantly improves the quality of classification in classification
problems and the quality of prediction in regression problems on various datasets. More
precisely, the new algorithm’s performance in classification problems is better by at least
22% in terms of accuracy and by at least 3% in terms of R2 compared to the classical
random forest algorithms.

The rest of our work consists of the following parts. The ‘Basics of random forests’
section describes the fundamental rules of random forest construction for classification
and regression tasks. The ‘Application of parametric entropies in random forests’ section
describes the proposed variations of the target function, namely, different types of
information gain based on different types of parametric entropy, for finding the best
split in the tree construction process and general algorithm of random forest construction.
The ‘Description of computer experiments’ section outlines the design of our computer
experiments for each type of proposed information gain and describes the used datasets.
The ‘Results’ section demonstrates the behavior of quality measures in dependence on
the type of information gain and corresponding parameters and outlines the best results
for each dataset. The ‘Discussion’ section interprets the obtained results and reviews the
possible limitations of the proposed approach. The ‘Conclusion’ section summarizes our
findings.

BASICS OF RANDOM FORESTS
The basic idea of a random forest (an ensemble of decision trees) is to create hierarchically
tree-like structures consisting of decisive rules of the form ‘‘If ... then ...’’. The rules are
automatically generated during the learning process on the training set.With this approach,
the dataset is divided into many pieces, and its own set of rules is formed for each piece.
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The formation of the final set of rules is determined in such a way that tree branching
(splitting of data) leads to a decrease in Gini impurity or Shannon entropy in the case
of classification task or to minimization of the error for the regression model. The result
of learning a random forest is a set of decision rules. Accordingly, a set of such rules is
used to predict a class (classification model) or a real number (regression model). In the
framework of this work, we propose to use the parametrized entropies of Renyi, Tsallis and
Sharma-Mittal instead of the classical version of the Shannon entropy. Correspondingly,
the use of additional entropy parameters in the formation of splitting rules makes it possible
to increase the quality of the random forest algorithm.

Let us consider the mathematical formalism of constructing such rules in more detail.
We begin by describing the concept of a decision tree. A tree is a data structure in the
form of a set of linked nodes represented as a connected graph without loops. Nodes can
be one of two types: internal and leaf (terminal) nodes. Each node has only one input
edge. In this work, we will consider only binary trees, where each internal node has exactly
two edges exiting from it. A decision tree is a set of questions organized hierarchically
and represented graphically as a tree. For a given input object, the decision tree evaluates
an unknown property of the object using a sequence of questions about known object
properties. Each internal node is associated with one such question. The sequence of
questions is represented graphically as a tree path. A decision is then made based on the leaf
node in the path. To build a decision tree, the following three rules are required (Breiman,
1984):
1. The way to choose the splitting of each internal node (that is, setting the target function

to be optimized by various possible splits).
2. The rule that determines that the node is terminal.
3. Prediction rule for each terminal node (i.e., a class for the classification problem and a

number in the case of regression).
The training phase of the decision tree consists of optimizing the selected target function

defined on the available training dataset. The optimization takes place in the form of a
greedy algorithm. Let us denote by Sj the set of data points falling into node j. Then, the
target function Ij is optimized by iterating through the possible splits for each node j, where
Ij = I (Sj,SLj ,S

R
j ), and SLj ,S

R
j are data points falling into right and left subtrees respectively.

The type of the target function depends on the problem.
Let us discuss the first rule in more detail. For the classification problem, information

gain (Criminisi, Shotton & Konukoglu, 2012) or Gini Index (Gini impurity) (Breiman, 1984)
is usually used as the target function. Information gain is based on the concept of entropy,
which in turn, is a measure of uncertainty or disorder. Information gain is used to quantify
which feature provides the most information about the classification based on the concept
of entropy, i.e., it measures the quantity of uncertainty in order to reduce the amount of
entropy going from the top (root node) downwards (terminal nodes). Information gain is
defined as follows:

Ij =H (Sj)−
∑

i∈{L,R}

|Sij |

|Sj |
H (Sij), (1)
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where H (·) is Shannon entropy, i.e., H (S)=−
∑

c∈Cp(c)logp(c), C is the set of classes,
c is a class label. It is worth noting that in Maszczyk & Duch (2006), and Gajowniczek,
Zabkowski & Orłowski (2015), nonclassical entropies were considered for decision tree
construction instead of classical Shannon entropy. Specifically, Renyi and Tsallis entropies
are applied in these works. However, numerical experiments were performed only for the
binary classification problem and only for the C4.5 algorithm (Quinlan, 1993). The results
of these works show that the application of nonclassical entropies for constructing decision
trees is a promising direction.

In contrast to information gain, Gini Index estimates the probability of misclassification
for a randomly selected object from a given node. If all elements in a given node belong to
the same class, then such a node can be called ‘‘pure’’. The features with the lowest Gini
Index value are chosen during the tree construction. Mathematically, Gini Index is defined
as follows: Gini= 1−

∑
c∈Cp

2(c).
For the regression problem, the least-square mean or mean absolute error is usually used

as the target function (Breiman, 1984). The target function in the form of the least-square
mean in the case of a one-dimensional dependent variable is expressed as follows:

δR=R(Sj)−R(SLj )−R(S
R
j ), (2)

where R(Sj)= 1
|Sj |
∑

xi∈Sj (yi− ȳj)2, ȳj = 1
|Sj |
∑

xi∈Sjyi, i.e., ȳj is the sample mean of values
falling into the given node. Thus, R(Sj) is the sum of the squares of the deviations of the
values falling in a given node from the average value for that node. The tree is constructed
by iterative splitting in such a way as to maximize the target function and correspondingly
maximize the reduction of R(S).

The target function in the form of mean absolute error is defined as follows (Breiman,
1984): δR=R(Sj)−R(SLj )−R(S

R
j ), where R(Sj)=

1
N
∑

xi∈Sj |yi− ν̂j |, ν̂j is the sample median
of values yi falling in the node j.

Let us note that in Criminisi, Shotton & Konukoglu (2012), the target function based on
information gain using the classical Shannon entropy is proposed for the construction of

the regression tree: Ij =
∑

x∈Sj log(|3y(x)|)−
|Sij |
|Sj |
∑

i∈{L,R}(
∑

x∈Sij
log(|3y(x)|)), where 3y

is the conditional covariance matrix. In Nowozin (2012), the application of information
theory and the use of information gain based on Shannon entropy to construct a regression
tree are also discussed.

The second rule for constructing a decision tree in the framework of random forest is
usually formulated as follows: a node becomes terminal either when the tree reaches the
maximum allowable number of levels D, or the maximum of the target function becomes
less than some given minimum value, or the node contains too little training data, that is,
less than some predetermined number.

Let us discuss the third rule for constructing a decision tree, which also depends on
the problem type. For the classification problem, the class to which the largest number
of training data corresponds in the given leaf node serves as the predictor (majority
principle) (Breiman, 1984). Moreover, instead of predicting one class, we can obtain the
probability of each class p(c|x),c ∈C , which is equal to the ratio of the number of training
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data with a given class in the given leaf node to the total number of training data in
the given leaf node. For the regression problem, a predictor in the form of a constant is
usually used (Breiman, 1984); namely, the sample mean ȳj or the sample median ν̂j of all
training data that fell into a given node. If a sample mean is chosen as the predictor, then
the least-square error is considered the target function. If a sample median is chosen as a
predictor, then the mean absolute error is taken as the target function. In Criminisi, Shotton
& Konukoglu (2012), a probability-linear function is considered a predictor, namely,
y = β0+β1x1+ ...+βpxp, and, thus, each leaf node produces a conditional probability
p(y|x). In this case, information gain based on Shannon differential entropy is used as the
target function.

Next, let us discuss the details of the random forest construction. A random forest is
an ensemble of randomly trained decision trees. The key aspect of the forest model is
that its components, i.e., decision trees, differ from each other in a random manner. Each
tree is trained on a random subset of the original training data, and then the individual
predictions from each tree are aggregated to form the final prediction.

In this case, randomness can be introduced in various ways. First, random subsets
of observations, rather than all available observations, can be used in the construction
of each tree. If sampling without repetition is performed, such a method is called
‘‘pasting’’ (Breiman, 1999). If sampling is performed with repetition, then this method
is called bagging (Breiman, 1996; Breiman, 2001). Let us describe bagging in more detail
since it is almost always used in practical applications. If there are n observations in the
training datasetW , then bootstrap samplesWk of size n are formed in the bagging process,
and then each tree is built based on one such bootstrap sample. Thus, in each bootstrap
sample, some observations will be selected more than once, and some observations will not
be selected at all. It can be shown that each bootstrap sample will be missing approximately
1/3 of the observations from the original dataset. Since each tree is constructed using only
about 2/3 of the data, most of the trees will be significantly different from each other. In
addition, using bootstrap samples produces out-of-bag (OOB) estimates. OOB samples are
about 1/3 of the observations that were not used to construct a particular tree. Thus, one
can test each x that has not been used for the particular tree construction and calculate the
average prediction error for such values. The OOB errors are then calculated for each tree,
and then these values are averaged to estimate the accuracy of the predictions of the random
forest. The estimate constructed in this way is essentially leave-one-out cross-validation.
Bagging allows us to get an estimate of model accuracy without formally testing on new
data.

Second, random subspaces of a dataset can be obtained by randomly sampling attributes
(features). In practice, the number of attributesm=

√
p is often chosen, where p is the total

number of attributes (Probst, Wright & Boulesteix, 2019). This method is called ‘‘random
feature selection’’ (Breiman, 2001) or ‘‘random subspaces’’ (Ho, 1998).

Third, each tree can be constructed simultaneously on a subset of observations and a
subset of attributes of observations. This method is called ‘‘random patches’’ (Louppe &
Geurts, 2012).
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The introduction of randomization leads to the decorrelation of predictions between
trees. Thus, the predictive power and robustness are improved. The randomization
parameter controls not only the degree of randomness within each tree but also the degree
of correlation between trees in the forest. All trees are trained independently of each other
and, if possible, in parallel. Combining the predictions of all trees into a single prediction
is usually done by simple averaging (Breiman, 2001). Thus, for the classification problem,
we obtain:

p(c|x)=
1
T

T∑
τ=1

pτ (c|x), (3)

where c is a class, T is the number of trees in the forest, pτ (c|x) is the distribution obtained
within tree τ . Analogously, for the regression task, we obtain:

ŷ =
1
T

∑
τ

ŷτ , (4)

where ŷτ is the value predicted by tree τ . Alternatively to the averaging procedure,
the prediction for the classification can be obtained by multiplying the predictions
from different trees, namely: p(c|x)= 1

Z
∏T
τ=1pτ (c|x), where Z is the normalization

constant. In general, a product-based ensemble model may be less robust with respect to
noise (Criminisi, Shotton & Konukoglu, 2012).

The construction of trees and their predictive abilities depend on model parameters.
The parameters that most affect the behavior of the random forest are the following:
the maximum tree depth D; the degree of randomization (controlled by the parameter
ρ) and the type of randomization; the size of the forest, that is, the number of trees
T ; and the target function. A number of articles have shown how accuracy on the test
sample increases monotonically with increasing forest size, T (Yin et al., 2007; Johnson
& Shotton, 2010; Criminisi et al., 2010). Shotton et al. (2013) showed that training very
deep trees leads to overfitting. The classical work of Breiman (2001) also showed the
importance of randomization and its effect on tree correlation. In addition, Criminisi,
Shotton & Konukoglu (2012) determined that the randomization model directly affects the
generalization ability of the random forest for the classification problem.

APPLICATION OF PARAMETRIC ENTROPIES IN RANDOM
FORESTS
Classification task
The target function for selecting the splitting of each internal node is usually based
on Shannon entropy. In this work, we consider three target functions based on the
following parametric entropies: Renyi entropy, Tsallis entropy, and Sharma-Mittal entropy.
Analogously to Eq. (1), Renyi entropy-based information gain for node j can be formulated
as follows:

Ij =H (Sj)−
|SLj |

|Sj |
H (SLj )−

|SRj |

|Sj |
H (SRj ),
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H (Sj)=
1

1−α
log
(∑
c∈C

(
p(c)

)α)
. (5)

In Eq. (5), H (·) is Renyi entropy with parameter α, C is the set of classes, c is a class label.
Tsallis entropy-based information gain is calculated as follows:

Ij =H (Sj)−
|SLj |

|Sj |
H (SLj )−

|SRj |

|Sj |
H (SRj ),

H (Sj)=
1

β−1

(
1−

∑
c∈C

(
p(c)

)β)
. (6)

In equation Eq. (6), H (·) refers to Tsallis entropy with parameter β.
Finally, Sharma-Mittal entropy-based information gain is expressed as follows:

Ij =H (Sj)−
|SLj |

|Sj |
H (SLj )−

|SRj |

|Sj |
H (SRj ),

H (Sj)=
1

1−β

((∑
c∈C

(
p(c)

)α) 1−β
1−α
−1
)
. (7)

In Eq. (7), H (·) is Sharma-Mittal entropy with parameters α and β. Let us notice that
Sharma-Mittal entropy becomes Renyi entropy if β→ 1 and Tsallis entropy if α→ β

(Akturk, Bagci & Sever, 2007). To build decision trees for the random forest, one has to
maximize the chosen target function to find the best split for each internal node. Then,
each leaf node makes a prediction based on the majority principle, i.e., the class is chosen
to which the largest number of training data points corresponds.

Regression task
Let us briefly discuss some properties of multiple linear regression with Gaussian noise,
which will then be used in the formulation of information gain. Let us consider the equation
of such a regression: y = a0+a1x1+ ...+apxp+ε, p is the number of factors, ε∼N (0,σ 2)
and noise is independent between different measurements. Then y|x ∼N (xTa,σ 2), where

x =

 1
x1
.
.
.

xp

and a=

a0
a1
.
.
.

ap

. In matrix form, it can be expressed as follows: Y =X ·a+ε, where

ε∼MVN (0,σ 2I ), X =
(

1 x11 x12 ... x1p
... ... ... ... ...

1 xn1 xn2 ... xnp

)
, Y =

(
y1
.
.
.

yn

)
, n is the number of observations.

The estimations of vector a and parameter σ 2 can be obtained in the following way:

â= (XTX)−1XTY ,

σ̂ 2
=

1
n
hTh,where h=Y −X · â. (8)

In the framework of a decision tree, let us define a probabilistic linear predictor
(Criminisi, Shotton & Konukoglu, 2012) for node j as dj(x)= xT âj , where âj is calculated
based on the observations fallen into node j according to Eq. (8). Further, let us introduce
four types of information gain based on classical Shannon entropy and three parametric
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entropies taking into account the introduced probabilistic linear predictor. First, Shannon
entropy-based information gain for node j can be determined as follows:

Ij =H (Sj)−
|SLj |

|Sj |
H (SLj )−

|SRj |

|Sj |
H (SRj ),

H (Sj)=−
1
|Sj |

∑
x∈Sj

∫
y∈R

p(y|x)log(p(y|x))dy, (9)

where p(y|x)=N (xT âj,σ̂ 2
j ), |Sj | is the number of observations in node j. In Eq. (9),

H (·) is differential Shannon entropy. After calculating the integral, we obtain∫
y∈Rp(y|x)log(p(y|x))dy =

1
2 log(2πeσ̂

2
j ) (Cover & Thomas, 2006). Thus, H (Sj) =

1
|Sj |
∑

x∈Sj
1
2 log(2πeσ̂

2
j )=

1
2 log(2πeσ̂

2
j ). Therefore, Eq. (9) can be rewritten as follows:

Ij =
1
2
log(2πe)+ log(σ̂j)−

∑
i∈{L,R}

|Sij |

|Sj |
(
1
2
log(2πe)+ log(σ̂j i)). (10)

Second, let us introduce Renyi entropy-based information gain for node j:

Ij =Hα(Sj)−
|SLj |

|Sj |
Hα(SLj )−

|SRj |

|Sj |
Hα(SRj ),

Hα(Sj)=
1
|Sj |

∑
x∈Sj

1
1−α

log(
∫

y∈R
pα(y|x)dy), (11)

where p(y|x)=N (xT âj,σ̂ 2
j ), Hα(·) is differential Renyi entropy with parameter α; more

precisely, it is a conditional Renyi entropy (Fehr & Berens, 2014). One can demonstrate
that∫
y∈R

pα(y|x)dy =
1

σ̂ α−1(
√
2π)α−1

√
α
. (12)

For example, this is shown in Nielsen and Nock (Nielsen & Nock, 2011). Thus, Hα(Sj)=
log(
√
2π)+ log(σ̂j)−

log(
√
α)

1−α . Therefore, Eq. (11) can be rewritten in the following form:

Iαj = log(
√
2π)+ log(σ̂j)−

log(
√
α)

1−α
−

∑
i∈{L,R}

|Sij |

|Sj |
(log(
√
2π)+ log(σ̂j i)−

log(
√
α)

1−α
). (13)

Third, Tsallis entropy-based information gain for node j can be formulated in the
following way:

Iβj =Hβ(Sj)−
|SLj |

|Sj |
Hβ(SLj )−

|SRj |

|Sj |
Hβ(SRj ),

Hβ(Sj)=
1
|Sj |

∑
x∈Sj

1
β−1

(1−
∫
y∈R

pβ(y|x)dy), (14)

where p(y|x)=N (xT âj,σ̂ 2
j ), Hβ(·) is differential Tsallis entropy with parameter β. Using

relation Eq. (12), we obtain that Hβ(Sj)= 1
|Sj |
∑

x∈Sj
1

β−1(1−
1

σ̂
β−1
j (
√
2π)β−1

√
β
). Therefore,
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Eq. (14) can be rewritten as:

Iβj =
1

β−1
(1−

1

σ̂
β−1
j (
√
2π)β−1

√
β
)−

∑
i∈{L,R}

|Sij |

|Sj |
(

1
β−1

(1−
1

σ̂
β−1
j i (
√
2π)β−1

√
β
)). (15)

Fourth, let us introduce Sharma-Mittal entropy-based information gain for node j:

Ij =Hα,β(Sj)−
|SLj |

|Sj |
Hα,β(SLj )−

|SRj |

|Sj |
Hα,β(SRj ),

Hα,β(Sj)=
1
|Sj |

∑
x∈Sj

1
1−β

((
∫
y∈R

pα(y|x)dy)
1−β
1−α −1), (16)

where p(y|x) = N (xT âj,σ̂ 2
j ), Hα,β(·) is differential Sharma-Mittal entropy with

parameter α and β. Let us note that α,β > 0, α 6= 1, β 6= 1, α 6= β according to
the definition of Sharma-Mittal entropy. Using Eq. (12), we obtain that Hα,β(Sj)=
1
|Sj |
∑

x∈Sj
1

1−β (
1

σ̂
β−1
j (
√
2π)β−1α

1−β
2(1−α)
−1). Therefore, Eq. (16) can be rewritten as follows:

Iα,βj =
1

1−β
(

1

σ̂ β−1(
√
2π)β−1α

1−β
2(1−α)

−1)−

∑
i∈{L,R}

|Sij |

|Sj |
(

1
1−β

(
1

σ̂
β−1
j i (
√
2π)β−1α

1−β
2(1−α)

−1)). (17)

In the framework of the introduced formulations of information gain, the best splitting
corresponds to the maximum information gain value.

Random forest algorithm
Let us formulate the general algorithm of random forest construction considering the
proposed expressions of information gain with different types of entropies. Suppose we
have the following data (x1,y1),(x2,y2),..,(xn,yn) where each xi represents a feature vector
[xi1,xi2,...,xip] and let T be the number of trees we want to construct in our forest. Then,
to build a random forest, the following steps should be performed:

• For t = 1,...,T :

– Draw a bootstrap sample of size n from the data.
– Grow a decision tree t from the bootstrapped sample by repeating the following steps
until the minimum node size specified beforehand is reached, or the maximum depth
of the tree is reached, or the minimum reduction in the information gain is reached:

* sample m=
√
p or m= [p/3] features (where p is the number of features in the

dataset)
* compute the information gain according to one of the Eqs. (5), (6), (7) for
classification task and according to one of the
Eqs. (10), (13), (15), (17) for regression task for each possible value among the
bootstrapped data and m features

* find the information gain maximum and split the node into two children nodes
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Table 1 Summary of the datasets used for classification task.

Dataset # of instances # of features # of classes

har 10,299 561 6
eeg-eye-state 14,980 14 2
shuttle 58,000 9 7

Table 2 Summary of the datasets used for regression task.

Dataset # of instances # of features # of distinct values in target variable

diabetes 442 10 214
bank32nh 8,192 32 6,284
sulfur 10,081 6 9,368

• Output the ensemble of trees and combine the prediction of all trees into a single
prediction according to Eq. (3) for a classification task and Eq. (4) for regression.

DESCRIPTION OF COMPUTER EXPERIMENTS
To test the proposed formulations of information gain, we used three datasets for the
classification task and three datasets for the regression task. The datasets were chosen
according to the following considerations: (1) Datasets should be from different areas
so they reflect different types of data. Accordingly, it allows us to demonstrate that the
proposed entropy approach is applicable to different types of data. (2) Datasets should
be well-known in the field of machine learning. Thus, we consider the datasets that were
used in other works as benchmarks. Let us note that some of the considered datasets
are not balanced regarding classes. The considered datasets are summarized in Tables 1
and 2. Classification datasets are available at https://doi.org/10.5281/zenodo.8322044, and
regression datasets are available at https://doi.org/10.5281/zenodo.8322236.

For the classification task, the number of trees in the forest was fixed as 300; the datasets
were split into training and test sets in proportions of 0.75 and 0.25, correspondingly. Let
us note that the number of trees was chosen deliberately large in order to demonstrate
the advantage of our entropy approach since, according to a set of works (Yin et al., 2007;
Johnson & Shotton, 2010; Criminisi et al., 2010; Criminisi, Shotton & Konukoglu, 2012),
increasing the number of trees leads to a monotonous increase in the accuracy of the model
and a decrease in fluctuations of the results. The number of features sampled for each split
of a node in decision trees was set to [p/3], where p is the number of features in the dataset.
The maximum depth of decision trees was set to 16. In addition, the learning of each
decision tree was organized not on bootstrap samples but on the whole dataset. Otherwise,
the random forest was constructed as described in the ‘Random forest algorithm’ section.
Parameters α and β were varied in the range of [0.01,...,0.99] in the increments of 0.01. To
estimate the quality of random forest predictions, accuracy, and F1 score were calculated
for the test sets, and a baseline model of random forest with Shannon entropy-based
information gain was calculated. Let us note that we did not consider ROC and AUC
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metrics since it is preferable to use F1 score for imbalanced datasets, while optimization
with ROC and AUC is not optimal in this case.

For the regression task, the number of trees in the forest was fixed as 500; the datasets
were split into training and test sets in proportions of 0.75 and 0.25. The number of features
sampled for each split of a node in decision trees was set to

√
p, where p is the number of

features in the dataset. The maximum depth of decision trees was set to 16. The minimum
number of observations in a node was set as p ·10 to have sufficient data for regression
training (the so-called rule of 10). The random forest was constructed as described in the
‘Random forest algorithm’ section. To estimate the quality of random forest predictions,
R2, MSE, and MAE scores were calculated for the test sets. For diabetes dataset, parameters
α and β were varied in the range of [0.01,...,0.99] in the increments of 0.01. However, for
relatively large datasets (bank32nh and sulfur), parameters α and β were varied in the range
of [0.1,...,0.9] in the increments of 0.1 (small grid of parameter values) for calculations
with Sharma-Mittal entropy-based information gain in order to reduce computational and
time costs. For Renyi and Tsallis entropies, parameters α and β were varied in the range of
[0.01,...,0.99] in the increments of 0.01.

To estimate the proposed models, we consider two baseline models, namely,
Breiman’s random forest for regression with a least-square mean target function
implemented in sklearn and simple multiple linear regression, also implemented in
sklearn (https://scikit-learn.org/0.21/, scikit-learn version 0.21.2) (Pedregosa et al., 2011).
Let us note that the configuration of Breiman’s random forest was also set as described
above, i.e., 500 trees with a maximum depth of 16, and

√
p sampled features for each split.

The source codes of the random forest algorithms with the proposed information gains
can be found at https://doi.org/10.5281/zenodo.8327384.

RESULTS
Figure 1 demonstrates the dependence of accuracy for the classification task on the used
entropy type and its parameter value for each dataset. Figure 1A demonstrates the results
achieved with the application of Renyi entropy while Fig. 1B demonstrates the behavior
of accuracy when Tsallis entropy is used. One can see that the accuracy increases with
the increasing parameter for both Renyi and Tsallis entropies and for all three datasets.
Moreover, the lines of accuracy corresponding to Renyi and Tsallis entropies are above the
accuracy line of the baseline model with Shannon entropy for all three datasets, meaning
that the application of deformed entropies improves the quality of predictions for random
forest algorithms. The best accuracy values for different types of information gain and
the accuracy value of the baseline model with Shannon entropy-based information gain
(i.e., Breiman’s algorithm) are presented in Table 3 for each dataset. The best accuracy
values for each dataset are highlighted in bold. One can see that applying two-parametric
Sharma-Mittal entropy allows us to improve the prediction accuracy further, demonstrating
the best-achieved results (Table 3) for all three datasets.

Figure 2 demonstrates the dependence of R2 value on entropy type and its parameter
value for each dataset for the regression task. One can see that R2 does not have a clear
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Figure 1 Dependence of accuracy on entropy type and corresponding parameter (classification task).
(A) Renyi entropy-based information gain. (B) Tsallis entropy-based information gain.

Full-size DOI: 10.7717/peerjcs.1775/fig-1

Table 3 Accuracy of random forest algorithms for classification with different types of information
gain.

Dataset Renyi Tsallis Sharma-Mittal Shannon
(baseline)

har 0.349 (α= 0.98) 0.353 (β = 0.86) 0.377 (α= 0.89, β = 0.11) 0.178
eeg-eye-state 0.635 (α= 0.98) 0.639 (β = 0.99) 0.649 (α= 0.99, β = 0.05) 0.53
shuttle 0.9607 (α= 0.91) 0.9576 (β = 0.97) 0.9612 (α= 0.94, β = 0.92) 0.787

monotone behavior as it was for the accuracy for the classification task. Let us note that
the introduction of parameterized entropies in the random forest algorithm differs greatly
for classification and regression versions. This is why the behavior of the obtained results
for classification and regression are so different. Indeed, R2 values for random forests with
Renyi and Tsallis entropy-based information gains fluctuate around a certain value, which
is specific for each dataset, in the range of ±0.006. This result means that the proposed
models are rather stable under variation of hyperparameters of the parameterized entropies.
Moreover, one can see that the lines of R2 for entropy-based information gains lie above
the R2 values of baseline models for all three datasets, meaning that the application of an
entropy-based information gain improves the quality of predictions for random forest
algorithms. The best values of R2, MSE, and MAE for different types of information gain
for each dataset and corresponding values for baseline models are given in Table 4. The
best values for each dataset are highlighted in bold.

DISCUSSION
First of all, let us note that the quality of obtained results for the proposed information
gains (Tables 3 and 4) can be significantly improved by varying the number of sampled
features, the minimum number of samples in a leaf node and increasing the number of
trees. However, such tuning depends on a dataset and is time-consuming. Therefore, in
this work, we present the results without such a tuning.
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Figure 2 Dependence of R2 on entropy type and corresponding parameter (regression task). (A) Renyi
entropy-based information gain. (B) Tsallis entropy-based information gain.

Full-size DOI: 10.7717/peerjcs.1775/fig-2

Second, based on our results, the application of deformed entropies allows us to
increase the quality of predictions compared to baseline models for both classification and
regression tasks and for all tested datasets. Let us note that, for the classification task, the
accuracy of predictions when using deformed entropies is higher for all considered entropy
parameter values compared to the accuracy of the algorithm with classical Shannon-based
information gain. For the regression task, the values of R2 for the proposed types of
entropy-based information gain are larger than that for standard algorithms, such as
Breiman’s random forest and multiple linear regression.

Third, we discovered that application of two-parametric Sharma-Mittal entropy had the
best results in terms of prediction accuracy for the classification task. For the regression
task for diabetes dataset, where a large grid of parameter values was considered, the best
results were also obtained with Sharma-Mittal entropy-based information gain. For larger
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Table 4 Results on prediction quality of random forest algorithms with different types of information gain for a regression problem.

Dataset Measure Shannon Renyi Tsallis Sharma-Mittal Breiman’s RF
(baseline)

Linear
regression
(baseline)

R2 0.521487 0.52366 (α= 0.64) 0.5245 (β = 0.29) 0.5265 (α= 0.18, β = 0.61) 0.51097 0.4849
MSE 2646.026 2633.997 (α= 0.64) 2629.324 (β = 0.29) 2618.3 (α= 0.18, β = 0.61) 2704.178 2848.295diabetes

MAE 39.664 39.448 (α= 0.79) 39.477 (β = 0.29) 39.322 (α= 0.97, β = 0.07) 41.934 41.548
R2 0.57653 0.5784 (α= 0.02) 0.57893 (β = 0.04) 0.57885 (α= 0.5, β = 0.5) 0.469 0.53
MSE 0.00623 0.006204 (α= 0.02) 0.006197 (β = 0.04) 0.006198 (α= 0.5, β = 0.5) 0.008 0.007bank32nh

MAE 0.05285 0.05279 (α= 0.42) 0.052825 (β = 0.57) 0.052806 (α= 0.3, β = 0.6) 0.061 0.058
R2 0.7844 0.7894 (α= 0.61) 0.8094 (β = 0.03) 0.8085 (α= 0.2, β = 0.1) 0.762 0.349
MSE 0.00063 0.00062 (α= 0.61) 0.00056 (β = 0.03) 0.000563 (α= 0.2, β = 0.1) 0.0007 0.0019sulfur

MAE 0.01059 0.01054 (α= 0.17) 0.010478 (β = 0.4) 0.010475 (α= 0.2, β = 0.1) 0.0106 0.0189

datasets, where a small grid of parameter values was considered for experiments with
Sharma-Mittal entropy, the best results in terms of R2 are obtained with Tsallis entropy.

Speaking of the advantages of our approach, we can determine the following. The
proposed modifications of random forest algorithms based on parameterized entropies for
classification and regression problems have a significant degree of flexibility, allowing us to
qualitatively determine patterns inherent in different types of data. First, flexibility is due
to the fact that non-classical entropies better describe different types of distributions (for
example, power law distribution), which differ significantly from the normal distribution.
Second, parameterized entropies provide additional parameter settings, which allow us
to fit trees on specific feature sets more accurately. That is why combining these two
factors makes it possible to get better results. However, on the other hand, the presence
of additional parameter settings leads to a significant increase in the computation time.
This limitation can be solved by parallelizing the computations using CUDA technology;
however, this is beyond the scope of this work. Speaking of other possible limitations or
disadvantages of this work, it should be noted that our approach is tested only on datasets
with numeric features, and datasets with categorical or one-hot encoded features are not
considered. Another possible disadvantage of our work is that the proposed algorithms
in Python are not well optimized and, therefore, are more time-consuming than baseline
models. In addition, the proposed algorithm for regression forest is more computationally
expensive (namely, because for each split, a set of linear regression models is computed)
than classical Breiman’s random forest.

CONCLUSION
In this work, we proposed a generalized version of the random forest algorithm, which
uses parameterized entropies of Renyi, Tsallis, and Sharma-Mittal for classification and
regression problems. Generalization is achieved due to the fact that the classical version
of the random forest algorithm for classification problems is based on Shannon entropy,
which is a special case of Renyi and Tsallis entropies, which, in turn, are special cases of
the two-parameter Sharma-Mittal entropy. The use of additional parameters in entropies
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makes it easy to take into account specialized patterns in complex data that are difficult to
determine when using the classical version of the random forest algorithm. New variants of
the random forest algorithmwere tested on six different datasets (three for the classification
problem and three for the regression problem). As our experimental results demonstrate,
parametrized entropies improve classification results practically by 19–111% (in terms of
accuracy metric) depending on the dataset type. In addition, in regression problems, our
approach shows an improvement in the range of 2–23% (depending on the dataset) in
terms of the qualitymeasureR2. Thus, our entropy approach to classification and regression
random forests is novel and demonstrates a better result compared to the classical approach
when applied to complex data analysis.
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