
How many clusters? An Entropic Approach to
Hierarchical Cluster Analysis

Abstract. Clustering large and heterogeneous data of user-profiles from
social media is problematic as the problem of finding the optimal number
of clusters becomes more critical than for clustering smaller and homo-
geneous data. We propose a new approach based on the deformed Rényi
entropy for determining the optimal number of clusters in hierarchical
clustering of user-profile data. Our results show that this approach allows
us to estimate Rényi entropy for each level of a hierarchical model and
find the entropy minimum (information maximum). Our approach also
shows that solutions with the lowest and the highest number of clusters
correspond to the entropy maxima (minima of information).
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1 Introduction

The importance of information as a resource in modern society is growing sig-
nificantly due to the high speed of dissemination and importance for decision-
making. At the same time, online social networks (OSN) increasingly become
more critical infrastructure in the process of disseminating information. On the
one hand, networks represent the environment for the distribution of informa-
tion; on the other hand, networks themselves generate information capable of
affecting significantly economic and political preferences of people. The political
turmoils of recent years in various countries (the Arab Spring, the Occupy Wall
Street movement, the Ukrainian crisis), the apparent imbalance in news cover-
age on various online platforms (i.e. the US presidential elections), generation of
numerous fake informational events and their explosive distribution through so-
cial networks demonstrate the need for a clear understanding of the information
transmission and transformation processes.

In the study of news dissemination through OSN, networks should be consid-
ered as complex social systems (complex systems), requiring the use of various
methodologies. There are many models of news spread which account for net-
work topology [7], the role of ‘influential users’ [18] and the topical component of
the distributed messages [2]. However, one of the critical factors in news spread
through OSN is a set of social attributes of users, such as gender, age, political
preferences or religious affiliation [14]. Thus, when analyzing the distribution of
information through OSN, it is necessary to solve the problem of estimating the
influence of users’ social attributes on the depth and speed of dissemination.
This problem can be solved either by constructing regression models [14, 30],
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or by including user features in a unified probabilistic framework [4]. However,
despite the importance of adding user attributes to a model for transmitting in-
formation over OSN [12], the inclusion of a large set of features in probabilistic
models is a big problem due to their extreme heterogeneity.

Another solution is to cluster users on their features and reduce them to
one variable of ‘user similarity’. Accordingly, ‘user similarity’ can replace the
many user features in probabilistic models of information dissemination. How-
ever, clustering of OSN users by their socio-demographic characteristics with
classic models such as K-means, C-means or hierarchical model, despite the de-
veloped techniques [25, 22], causes problems, as it is necessary to determine the
right number of clusters. Moreover, our experience shows that such techniques
as Gap statistic [28], Jump method [26] or elbow method [17] are unable to find
the optimal number of clusters on large user data from OSN. Therefore, it is
necessary to develop other techniques for determining the optimal number of
clusters.

In the framework of this work, we consider the direction of ‘network thermo-
dynamics’ [8], which allows one to organize data clustering, or rather, determine
the number of clusters, based on the thermodynamic formalism [24, 31]. In this
paper, an entropy approach is proposed for determining the optimal number
of clusters for profile data of OSN users with the hierarchical clustering proce-
dure. The distinctiveness of the hierarchical method is in the construction of an
hierarchical structure (dendrogram) of folded clusters.

Here, at the highest level of a hierarchy, all nodes are assigned to one clus-
ter, and at the lowest level, each element is a separate cluster. Hence, one can
determine the entropy of two borderline situations and organize a search for the
number of clusters inside these boundaries.

2 Background

The study of complex systems with methods of statistical physics is a leading
stream in the network analysis research. Here one can distinguish several areas,
each with specific goals and tasks. One is the area of network modeling such
as Erdös-Rényi, Bollobás-Riordan, Watts-Strogatz models and other [21, 11, 6].
However, the other two areas are more relevant to our problem.

The second area studies clustering models of network structures, where re-
searches develop metrics for graph partitioning [13]. For instance, when dealing
with large in terms of nodes and edges networks, researchers describe a network
with methods of statistical physics such as annealing models for modularity
optimization [8, 15] or with thermodynamic formalism [9, 31]. Additionally, the
concept of entropy, as in classic Gibbs-Shannon or Rényi-Tsallis definition based
on deformed logarithm, could be found in the literature of network analysis [27,
23]. This area could be referenced to as the ‘network thermodynamics’ [8].

Another area is closely related to the two already mentioned and involves
models of hierarchical cluster analysis. Such clustering procedures attempt to
restore the structure as a dendrogram, or one may say that such procedure is
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the sequential merging of smaller clusters into increasingly larger. One feature
of the hierarchical approach to data clustering is the formation of parent-child
relations, where parents are merged child clusters. In such a structure, the top
level has all nodes in one cluster, and the bottom level has each node in a separate
cluster.

When hierarchical clustering is applied to small data, where dendrogram is
no larger than ten levels, the analysis is not so problematic. However, when data
consists of several thousand or more units, the problem of choosing a dendrogram
cut (the number of clusters) becomes complicated. A solution to this problem
could be found with the thermodynamic formalism from non-extensive statistical
physics.

We ground our approach in the following works. The first [24] is proposing
to search for the free energy minimum in data clustering. However, this criterion
is developed only for the K-means type of algorithms. The second work [27]
shows that the Tsallis entropy obtained with q-deformed Stirling formula may
be used to describe hierarchical statistical systems where each level has its value
of the Tsallis entropy. Such a description allows for exploring the hierarchical
structure using the Tsallis entropy. As for hierarchical cluster analysis, Gibbs-
Shannon entropy was used for evaluating solutions in [1, 10].

Thirdly, we build on the work of Olemskoi, who proposed using the concept of
internal energy to describe a hierarchical system, which allows us to determine
the free energy of the entire hierarchical system, as well as at each level [23].
However, unlike Olemskoi, who considers the transition from level to level in a
hierarchical tree in terms of a diffusion process on branching trees, we propose
to view the transition process as a process of hierarchical clustering which is
characterized by the measure of the Rényi entropy. The Tsallis entropy could be
obtained from the Rényi entropy with simple transformations [3].

A similar use of the deformed Rényi entropy is considered in [19, 20] for
clustering of large document collections. The tests showed that the minimum of
the Rényi entropy corresponds to the human choice of the number of clusters. At
the same time, the maximum of entropy corresponds the lowest and the largest
numbers of clusters (from one-two to hundreds and more). In such cases, the
Rényi entropy becomes larger as the distribution of features becomes uniform.
However, these approaches have not been adapted for hierarchical models.

3 An Entropic Approach

Based on the discussed works, we formulate an entropic approach for determining
the optimal level (the number of clusters) in hierarchical clustering.

We start from the proposition by Beck that information is related to entropy
in the following way: S = −I [5]. Thus, information maximum corresponds to
entropy minimum. Next, we consider a set of objects (nodes) as a statistical
system. At the starting point, such a system is characterized by entropy max-
imum (information minimum) because at the initial state each object belongs
to a separate cluster. Next, we consider a number of clusters as a temperature
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of such system which is a function of a level in hierarchical clustering. Given
that, the hierarchical clustering procedure transforms a system from the state of
maximum entropy to the state of the entropy minimum by changing the num-
ber of clusters (temperature). Therefore, the optimal clustering for large and
heterogeneous data would be at the state of the entropy minimum for a system.

In the framework of hierarchical clustering, one can find two borderline sit-
uations: (1) All objects belong to one cluster. Such clustering has minimal in-
formation value, and, correspondingly, such solution has large entropy. (2) Each
object is a unique cluster where the probability that a particular object belongs
to a cluster is constant. In this case, as it is a uniform distribution, entropy is
also large.

A hierarchical clustering procedure constructs a hierarchical tree, where each
level has a certain number of clusters. Each cluster may contain a different
number of objects Nik, where k is a cluster on level i. However, the total number
of elements on each level always equals the total number of system elements N .
We define the probability of elements in cluster k on level i as follows:

pik =
Nik

N
.

If each cluster contains the same number of elements, we obtain a uniform dis-
tribution. Notice that we also obtain a uniform distribution on the lowest level,
when each element is a cluster. Therefore, we introduce a threshold 1/N and in-
vestigate obtained distributions with respect to this initial uniform distribution.

Correspondingly, one can describe each level i of a dendrogram with following
variables: (1) The total number of clusters Ki on level i. (2) The total number
of elements with probability over the threshold pik > 1

N of level i, namely,
Mi =

∑
k Nik · 1(Nik

N − 1
N

), where the step function 1(·) is defined by 1(x−y) = 1

if x ≥ y and 1(x−y) = 0 if x < y. (3) The sum of high probabilities P̃i, i.e.,

probabilities larger than 1/N , namely, P̃i =
∑

k pik · 1(pik− 1
N ).

We can measure all these variables in the process of data clustering. With
these values, one can determine internal energy and Gibbs-Shannon entropy at
a given level in the following way:

Ei = − ln

(
P̃

Ki

)
,

Si = ln

(
Mi

N

)
.

With Gibbs-Shannon entropy and internal energy, one can define free energy and
Rényi entropy for each level of a hierarchy. Free energy of a hierarchical level i
is expressed as

Fi = Ei −KiSi.

And Rényi entropy of level i can be expressed as follows [5]:

SR
i =

Fi

1 − q
,
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where q = 1
Ki

is a deformation parameter. Thus, our approach allows us to
estimate the process of hierarchical clustering from a perspective of behaviour of
Rényi entropy under transition between levels, i.e., to estimate the dependence
of entropy on the number of clusters.

The process of clustering begins with minimum information (maximum Rényi
entropy) and also ends with maximum Rényi entropy. Hence, minimum Rényi
entropy (information maximum) is located somewhere in between these maxima.
Particular data features will define the location of the global minimum and a set
of local minima.

4 Experiment

We test our approach on data of user-profiles from the leading Russian OSN
Vkontakte (VK). We collected the data through VK API [29]. Then, we anonymi-
zed user data, i.e., names, surnames and IDs were deleted to avoid the possibility
of revealing real users. The dataset includes digital traces of user activity such
as numbers of likes, posts, reposts, comments; indicators of subscribing to one
or more pages from 12 national news channels publishing news on VK; as well
as user stated political beliefs (one of eight). In total, the dataset has 47 user
attributes of a total 50,000 users. Our attempts to cluster this dataset with K-
means and C-means while searching for the optimal number of clusters with gap
statistics, jump and silhouette methods were unsuccessful.

We test our approach in two stages. First, we conduct hierarchical clus-
tering using the ’complete’ method of calculating the distance between newly
formed clusters [16], namely, the distance between clusters u and v is expressed
as d(u, v) = maxi,j(dist(u[i], v[j])), where ’dist’ refers to Euclidean distance, u[i]
and v[j] are objects contained in cluster u and cluster v, correspondingly. In each
iteration, we select and merge two or more clusters with the smallest distance.
This stage produces a hierarchy of clusters.

Then, we calculate the number of obtained clusters on each level of the
hierarchy and the number of users in each cluster. Here, all users belong to
the same cluster on the upper level of the hierarchy, and each user belongs to a
separate cluster on the bottom level of the hierarchy, i.e., the lowest level contains
50,000 clusters. Then, we compute Gibbs-Shannon entropy, internal energy, free
energy and Rényi entropy (an example of calculations in Python is available here:
https://www.sendspace.com/file/on1fkx). Finally, we will consider our approach
valid if (1) it will show a clear entropy minimum (a maximum of information)
and (2) the entropy maxima (the minima of information) will correspond to the
borderline states.

5 Results and Conclusion

Figures 1 and 2 show two mutually opposite processes present during hierarchi-
cal clustering of social media users. The first process is the decrease of Gibbs-
Shannon entropy with a rising number of clusters, which means that the equi-
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librium state corresponds to the minimum of a given entropy. The equilibrium
corresponds to the state when each user is a separate cluster.
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Fig. 1. Distribution of Gibbs-Shannon entropy over the number of clusters.

The second process is the increase of internal energy with a rising number of
clusters (fig. 2). The difference between these two processes has an area where
they balance each other (fig. 3). In this area, the Rényi entropy has its minimum
value. Hence, the minimum of the Rényi entropy corresponds the maximum of
information of a hierarchical model. For this dataset, the minimum of the Rényi
entropy lies at the 1,281 clusters or 50,000 users could be grouped in 1,281
clusters (fig. 3). In the machine learning terms, the left branch of the Rényi
entropy indicates underfitting while the right branch to overfitting. Thus, the
minimum of the Rényi entropy indicates the optimal parameters of hierarchical
clustering.

In this work, we propose a criterion of finding the optimal number of clus-
ters for hierarchical clustering, using entropic formalism with deformed Rényi
entropy where the parameter of deformation is the number of clusters. This
approach could be used for such algorithms as Infinite Mixture Models with
Nonparametric Bayes and the Dirichlet Process with various implementations
(Chinese restaurant process, stick-breaking algorithm).

In further, we plan to test our approach with large synthetic data with a pre-
defined number of clusters. One potential area of further testing is to consider if
various combinations of user features affect the global Rényi minimum location.
Another direction is to consider other than Euclidean distances to asses their
fitness for hierarchical clustering of common types of data from OSN.
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Fig. 2. Distribution of internal energy over the number of clusters.
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Fig. 3. Distribution of Rényi entropy over the number of clusters.
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