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Abstract: Topic modeling is a popular technique for clustering large collections of text documents.
A variety of different types of regularization is implemented in topic modeling. In this paper, we
propose a novel approach for analyzing the influence of different regularization types on results of
topic modeling. Based on Renyi entropy, this approach is inspired by the concepts from statistical
physics, where an inferred topical structure of a collection can be considered an information statistical
system residing in a non-equilibrium state. By testing our approach on four models—Probabilistic
Latent Semantic Analysis (pLSA), Additive Regularization of Topic Models (BigARTM), Latent
Dirichlet Allocation (LDA) with Gibbs sampling, LDA with variational inference (VLDA)—we, first
of all, show that the minimum of Renyi entropy coincides with the “true” number of topics, as
determined in two labelled collections. Simultaneously, we find that Hierarchical Dirichlet Process
(HDP) model as a well-known approach for topic number optimization fails to detect such optimum.
Next, we demonstrate that large values of the regularization coefficient in BigARTM significantly
shift the minimum of entropy from the topic number optimum, which effect is not observed for
hyper-parameters in LDA with Gibbs sampling. We conclude that regularization may introduce
unpredictable distortions into topic models that need further research.

Keywords: topic modeling; Renyi entropy; regularization

1. Introduction

Topic modeling (TM) is one of the recent directions in statistical modeling, which is widely used
in different fields such as text analysis [1], mass spectrometry [2], analysis of audio tracks [3], image
analysis [4], detection and identification of nuclear isotopes [5] and many other applications. Topic
models are based on a number of mathematical techniques which are related to determining hidden
distributions in collections of big data. However, procedures which restore hidden distributions,
possess a set of parameters such as the number of distributions in a mixture of distributions and
regularization parameters. These parameters have to be set explicitly by a user of TM. In addition,
the values of regularization parameters affect significantly the results of TM [6]. The problem of
determining the optimal values of model parameters is complicated by the following issues. First,
values of parameters can depend on the content of the analyzed dataset, correspondingly, the values
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of parameters can be specific for different datasets. Second, the parameters may depend on the size of
the dataset. Increasing the size of a dataset makes numerical experiments on determining the optimal
values of parameters to be extremely time-consuming. However, increasing the size of datasets leads
to the fact that such data become comparable to mesoscopic systems and one can apply models and
metrics of statistical physics to such datasets. Moreover, a part of topic models is based on different
modifications of Potts model [7].

The task of TM consists of stochastic decomposition of the matrix of occurrences of words in
documents (Fdw) into two matrices: (1) matrix Θ = (θtd) containing the distribution of topics by
documents; (2) matrix Φ = (φwt) containing the distribution of words by topics. However, stochastic
matrix decomposition is defined not uniquely but with accuracy up to a non-degenerate transformation
[8]. If Fdw = ΦΘ is a solution then Fdw = (ΦR)(R−1Θ) is also a solution for all non-degenerate R
under which Φ′ = ΦR and Θ′ = R−1Θ are stochastic matrices. In terms of TM, ambiguity in retrieving
the solution means that the algorithm starting from different initial approximations will conjugate to
different points of the solution set. Namely, if running TM with the same values of parameters on
the same dataset, different outputs will be obtained. It is explained by the fact that TM is an ill-posed
problem [9]. The general solution to this type of problem is based on adding prior information
(regularization) and modifying the sampling procedure. Furthermore, regularization can be achieved
by introducing a combination of conjugate functions [1] and different types of regularization procedures
[8,10]. TM parameter optimization is a significant problem that still needs an extensive research. As a
partial solution, we propose an approach based on the concepts of statistical physics. Here, a collection
of documents is considered an information thermodynamic system. For such a system, Renyi entropy
can be introduced within the thermodynamic formalism [11] analogously to [7]. We propose an
effective and universal (i.e. independent of the type of regularization) concept, based on Renyi
entropy [12], for analyzing the influence of regularization on the outcome of TM. Our approach
allows us to estimate optimal values of TM hyper-parameters including the number of topics and
regularization parameters. Here, the optimal number of topics corresponds to the number of topics
determined by encoders who label test datasets. We apply Renyi entropy approach to four topic
models and two real datasets, additionally, we consider the output of hierarchical Dirichlet process
model (HDP). It is important to note that the proposed approach does not apply to HDP models,
which would demand its modification and, therefore, a special research. We compare the results of our
approach with a standard metric in the field of machine learning, namely, log-likelihood metric and
find that our method is faster and, in addition, allows to estimate the optimal number of topics while
log-likelihood does not. In our work, we do not consider metrics and models related to estimation of
interpretability of topic models, e.g., Kullback-Leibler divergence [13], semantic coherence [14], word
intrusion [15] and others. Investigation of these metrics deserves a separate paper.

Our paper consists of the following sections. Section 2.2 describes standard metrics of quality
which are used for determining parameters of topic models and considers their limitations. Section 2.1
introduces basic notations and assumptions of TM. Section 2.3 describes entropy approach where
Renyi entropy is proposed as the criteria to optimize parameters and hyper-parameters in topic models.
Section 3 presents the experiments carried out on two real datasets. Finally, the overall analysis of the
obtained results is presented in Section 4.

2. Materials and Methods

2.1. Topic Models

Let us briefly discuss some basic ideas behind TM and introduce our notations. TM is based on
the following assumptions [16]:

1. Let D be the number of documents in a dataset, W be the number of words.
2. There is a fixed number of topics (T) which are discussed in the dataset.
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3. Datasets are regarded as sets of triples (w, d, t) from the space W̃ × D̃× T̃, where W̃ is the set of
words, D̃ is the set of documents, T̃ is the set of topics.

4. ’Bag of words’. It is supposed that the order of words in documents and the order of documents
in a collection are unimportant for TM.

In TM, word probability in a document p(w|d) can be expressed as follows: p(w|d) = ∑T
t=1 φwtθtd,

where φwt is the probability of a word w to occur under a topic t, θtd is the probability of a topic t in a
document d. Probabilities φwt form a matrix of distribution of words by topics Φ = (φwt)w=1,...,W;t=1,..,T
and probabilities θtd form a matrix of distribution of topics by documents Θ = (θtd)t=1,...,T;d=1,...,D.
Different types of topic models are related to different regularization algorithms. There are two main
approaches in TM, namely: (1) Models which are based on maximum likelihood principle [1], where
matrices Φ and Θ are searched by Expectation-Maximization (E-M) algorithm. (2) Models which
are related to Monte Carlo methodology (Gibbs sampling) [17], where φwt and θtd are searched by
calculating expectation through Monte-Carlo method. Despite different mathematical approaches of
these types of models, both of them produce similar topic solutions [17]. It is notable that topic models,
regardless of the inference algorithm, transform the initial homogeneous word-topic distribution to
heterogeneous distribution with low entropy. The flat (uniform) distribution is usually used as the
initial distribution for LDA version with Gibbs sampling procedure, while random number generator
is used for initialization of topic models with EM algorithm. In both cases, the initial distribution
provides maximum entropy. During TM, the number of words with high probabilities changes
significantly. In general, the output of topic modeling contains a relatively small subset of words
with high probabilities (about several percents) while the rest words are assigned with probabilities
about zero [18]. It should be noted that, according to numerical experiments, the percentage of highly
probable words depends on the magnitude of hyper-parameters of the model and on the number of
topics. These observations allows us to build a theoretical approach for analyzing such dependency
using concepts of statistical physics. In our numerical experiments, five topic models are considered:

1. Probabilistic Latent Semantic Analysis (pLSA) [19] is a basic model with only one
parameter—’number of topics’. Inference method for this model is based on E-M algorithm.

2. Latent Dirichlet Allocation model with Gibbs sampling procedure (LDA GS) [20] can be
considered a regularized extension of pLSA, where regularization is based on prior Dirichlet
distributions for Θ and Φ with parameters α and β correspondingly. Unlike the above pLSA,
the inference in this model is based on Gibbs sampling procedure.

3. Variational Latent Dirichlet Allocation model (VLDA). This model uses variational E-M algorithm
[1]. We consider the version of this model where regularization is based only on a prior Dirichlet
distribution for Θ with parameter α. Selection of values of α is built in the algorithm.

4. The Additive Regularization of Topic Models (ARTM) [10] with smoothing/sparsing regularizers
for matrix Φ (smooth/sparse phi) and matrix Θ (smooth/sparse theta), here termed sparse phi
and sparse theta, respectively, is an alternative model to pLSA and LDA. These regularizers
allow a user to obtain subsets of topics highly manifest in a small number of texts and/or words
(sparsing effect), as well as subsets of topics relatively evenly distributed across all texts and
words (smoothing effect). The parameter that controls the value of sparsing is a regularization
coefficient termed τ. This model can be considered a regularization of pLSA, where regularization
is embedded in E-M algorithm (regularized’ E-M algorithm).

5. Hierarchical Dirichlet Process model (HDP) is an alternative approach, providing the possibility
to restore hidden topics without selecting the number of topics in advance [21,22]. Although this
model is non-parametric, in real scenarios, users need to set some parameters, e.g., truncation
on the allowed number of topics in the entire corpus. Since HDP returns the same number of
topics as the top-level truncation that is set before, it is assumed that by discarding empty ones,
the true number of topics can be obtained [22].

A more detailed description of pLSA, LDA GS, VLDA can be found in [7] (see supplementary
material). For description of ARTM, we refer the reader to [10], and for HDP to [21].
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2.2. Standard Metrics in the Field of Topic Modeling

To estimate the quality of topic models and to determine the values of parameters, three
functions are most often employed for this purpose: (1) perplexity, (2) log-likelihood, (3) harmonic
mean. The perplexity is a standard metric for estimating the model’s predictive capability on new

data and can be expressed in the following way [23]: perplexity(Dtest) = exp
(
−∑M

d=1 log p(d)
∑M

d=1 Nd

)
=

exp
(
−∑M

d=1 ∑W
w=1 nw

d log(∑T
t=1 φwtθtd)

∑M
d=1 Nd

)
, where Nd is the number of words in document d, M is the number

of test documents, nw
d is the number of times term w has been observed in document d. The lower

the perplexity score is the better the parameters’ values are. Perplexity can also be presented as the
exponent of Gibbs-Shannon entropy [24,25]. The use of perplexity for the selection of parameters of
topic models is discussed in a number of works [1,20,26].

In work [26], the perplexity is used for determining the optimal number of topics. The authors
demonstrated that the perplexity decreases monotonously by increasing the number of topics and
does not assist in selecting the number of topics. Some works show another behaviour of perplexity,
for example, authors of [17] demonstrate that the perplexity as a function of hyper-parameters has a
notable unique minimum for LDA GS model, VLDA and LDA with collapsed variational Bayesian
inference. Authors of [27] show that the perplexity as a function of the number of topics has a notable
minimum for LDA GS model, and maximal values of perplexity correspond to T → 1 and T → ∞.
In [28], it has been shown that the perplexity, used for a model with feature regularization, has clear
minimum for some values of varying parameters and the maximum of perplexity corresponds to
the maximum value of varying parameter. Thus, it can be noticed that different types of perplexity
behaviour can be found in literature on TM without an explanation of such behaviour.

The use of perplexity has some limitations, which are reviewed in [29]. The authors demonstrated
that the value of perplexity depends on the vocabulary size of the collection which was used for topic
modeling. The dependence of perplexity value on type of topic model and size of vocabulary is shown
in [30] as well. Thus, the comparison of topic models by means of perplexity is complicated [27,28] if
models were implemented on different datasets and different languages. Therefore perplexity-based
methods are not stable.

Another measure, which is often used when analyzing the results of topic modeling, is logarithm
of likelihood which can be presented in the following way [23,31]:

ln(P(D̃|Φ, Θ)) =
D

∑
d=1

W

∑
w=1

nw
d ln(

T

∑
t=1

φwtθtd),

where nw
d is frequency of word w in document d. Usually, the calculation of this value is carried out

when the perplexity stops changing. The hyper-parameters and number of topics are selected when
finding maximum of logarithm of likelihood [20]. Notice that logarithm of likelihood is a version
of perplexity and different types of log-likelihood behaviour are shown in literature as well as for
perplexity.

Harmonic mean is a metric that allows to evaluate how well the model can fit to
the data. Considering LDA GS model, harmonic mean can be expressed as follows [32]:
HM({P(d|z(s), Φ)}S

s=1) = ( 1
S ∑s

1
P(d|z(s),Φ)

)−1, where {z(s)}S
s=1 are S samples from a Gibbs sampler

after a burn-in period, d is a document. Harmonic mean is used as an estimator of P(d|Φ, α). Despite
the fact that harmonic mean method is simple and relatively computationally efficient, authors of
many works express doubts about this method [15,32] as an evaluation technique in TM.

Let us mention that there are methods that aim to optimize hyper-parameters in the LDA model
[31,33], however, they are based on log-likelihood maximization and do not consider the selection of
hyper-parameters values combined with optimizing the number of topics. In addition, such methods
were not tested for compliance with human judgements.
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2.3. Entropy Approach for Analysis of Topic Models

The entropy approach is based on the idea that a large document collection can be considered an
information system, for which Renyi entropy can be calculated in terms of the ’density of states’ and
internal energy [7]. We theoretically assume and demonstrate experimentally that the optimal number
of topics and the optimal values of hyper-parameters correspond to the minimum Renyi entropy. The
’density of states’ function can be expressed through the experimentally determined variables in the
following way: ρ = N/(WT), where N is the number of words with relatively high probabilities
(p > 1/W). The internal energy is expressed through the sum of word probabilities in the following
way:

E = − ln(P̃) = − ln

(
∑
w,t

p(w|t) · 1{p(w|t)>1/W)}

)
, (1)

where 1{·} is an indicator function.
Thus, topic model is described by two observable parameters: (1) the sum of probabilities of highly

probable words); (2) the number of highly probable words, N. Therefore, partition function (statistical
sum) of a topic model can be expressed as Zq = ρ · (qP̃)q, where q = 1/T [34]. Correspondingly, Renyi
entropy of a topic model is expressed in terms of partition function as

SR
q =

ln(Zq)

1− q
. (2)

A more detailed explanation of formulating Renyi entropy for topic models can be found in [7,34].
Application of Renyi entropy for investigation of TM results is useful due to the following reasons.
Firstly, Renyi entropy determines the degree to which the results of TM are non-equilibrium, so it
accounts for the contribution of the initial distribution of the topic model. Secondly, topic models
can be optimized based on finding the minimum of Renyi entropy. Thirdly, when calculating Renyi
entropy, one actually calculates the difference between two processes. Namely, increasing the number
of topics, on the one hand, leads to decreasing Gibbs-Shannon entropy and, on the other hand, to
increasing internal energy. What follows from this is the existence of an area where these two processes
counterbalance each other. In this region, free energy and, correspondingly, Renyi entropy have
the minimum values. Minimum of Renyi entropy corresponds to maximum of information of a
topic model [7]. Hence, evaluation of the influence of hyper-parameters on the results of TM can be
measured by means of Renyi entropy.

3. Results

3.1. Description of Data and Computer Experiments.

In our numerical experiments, the following datasets were tested:

• ’Lenta’ dataset (from lenta.ru news agency [35]). This dataset contains 8,630 documents with a
vocabulary of 23,297 unique words in the Russian language. Each of these documents is manually
assigned with a class from a set of 10 topic classes. However, some of these topics are strongly
correlated with each other. Thus, the documents in this dataset can be represented by 7–10 topics.

• ’20 Newsgroups’ dataset [36]. This dataset consists of 15,404 news articles with 50,948 unique
words. Each of the news items is assigned to one or more of 20 topic groups. Since some of these
topics may be combined, 14–20 topics can represent the documents of this dataset [37].

In order to determine the influence of regularization on TM we investigated the models, which
were discussed in section 2.1, namely: (1) pLSA model [19]; (2) LDA GS model [20]; (3) VLDA model
[1]; (4) BigARTM model [10]. Additionally, we compared the results of the Renyi entropy approach
for determining the ’optimal’ number of topics with the results of HDP model. In our numerical
experiments the number of topics T was varied in the range [2;50] in the increments of one topic. For
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LDA GS model, hyper-parameters α and β were varied in the range [0.1;1] in the increments of 0.1. For
BigARTM model we used the following values of τ: 0.01, 0.1, 1, and 10. For each topic model and for
each dataset we calculated log-likelihood and Renyi entropy.

Let us note that computational efficiency of Renyi entropy approach turned out to be much higher
than that of log-likelihood. For instance, calculation of Renyi entropy for the Lenta dataset under
variation of T in the range [2;50] in the increments of one took about 15 min, while calculation of
log-likelihood for the same data took about nine hours. Such a great difference occurs because for
Renyi entropy calculation it is enough to scan matrix Φ once, while for log-likelihood calculation
one needs to multiply components of two large matrices (Φ and Θ). The purpose of our experiments
was, firstly, to confirm that Renyi entropy allows us to determine the ’optimal’ number of topics for
the above datasets and to compare the results of this approach with the results obtained by HDP
model. Secondly, the purpose was to estimate the influence of hyper-parameters on results of TM and
to specify which variant of regularization gives better results according to log-likelihood and Renyi
entropy.

3.2. Optimal Number of Topics: HDP vs Renyi Entropy in LDA GS, VLDA and pLSA

To compare the results of HDP model, pLSA, VLDA and LDA GS, we calculate weights of topics
for HDP model, and Renyi entropy for pLSA, VLDA and LDA GS. In this experiment, we used the
software (available at https://github.com/chyikwei/bnp) which implements the online variational
Bayes for the HDP proposed in work [22] and is optimized with cython. This algorithm was developed
to analyze large datasets and is essentially faster than traditional algorithms [21,38].

Figure 1. Distribution of weights over the number of topics T for HDP model (Lenta dataset). TLT
(100)—black, TLT (50)—orange, TLT (30)–olive, TLT (20)—gold.

Figure 1 plots together the outputs of four solutions of HDP model (Lenta dataset) that differ by
the values of top-level truncation parameter (TLT): 100, 50, 30, and 20. Following [39], each output is
represented by a curve which sorts the weights of all inferred topics (whose number is always equal to
TLT) in a descending order. The idea is to give the user an opportunity to cut off low-weight topics and
to postulate that the “true” number of topics is equal to the number of high-weight topics. However,
as can be seen, there is no clear threshold between high-weight and low-weight topics. The curves
are monotone decreasing and do not allow to define the optimal number of topics. The same result
was obtained for the 20 Newsgroups dataset. Moreover, we applied the method proposed by Wang
and Blei [40] on both Russian and 20 Newsgroups corpora. This method proposes a truncation-free
stochastic variational inference algorithm for HDP, which adapts the model complexity on the fly
instead of requiring truncation values. For 100 runs, the method consistently inferred 28 topics on
’Lenta’ corpus and 24 topics on 20 Newsgroups corpus with default parameters. Recent progress in
the inference algorithms of Bayesian nonparametric models was made in work [41] which provides

https://github.com/chyikwei/bnp
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promising results in terms of speed and quality. However, to the best of our knowledge, this algorithm
was only applied to the tasks of image categorization but not topic modeling so far.

Figure 2 demonstrates Renyi entropy curves calculated according to (2) for three topic models
(pLSA, LDA GS with β = 0.1, α = 0.5 and VLDA). For VLDA model, the number of topics was varied
while the hyper-parameter α was selected automatically during the modeling. One can see that all three
curves have explicit minima of entropy. Moreover, entropy curves are very similar and the locations of
minima are almost identical, namely, 7–8 topics. We obtain analogous results for the 20 Newsgorups
dataset. Therefore, we conclude that Renyi entropy allows us to determine the ’optimal’ number of
topics for LDA GS, VLDA and pLSA models and this number is close to the human mark-up.

Figure 2. Distribution of Renyi entropy over the number of topics T (Lenta dataset). pLSA—black,
LDA GS (β = 0.1, α = 0.1)–orange, VLDA—olive.

3.3. Influence of Hyper-Parameters: pLSA vs LDA GS Model

Let us discuss the influence of hyper-parameters α and β of LDA GS model on results of TM.
Figure 3 demonstrates dependence of log-likelihood on the number of topics for different values of
α and β (Lenta dataset). One can see that the increase in the values of hyper-parameters leads to the
decrease in log-likelihood, which means that the model deteriorates as values of hyper-parameters
increase. For α = β = 1 we obtain the worst result. However, these curves do not allow us to determine
simultaneously the optimal values of regularization parameters and the optimal number of topics. The
behaviour of log-likelihood for these models on 20 Newsgroups dataset is similar to that for the Lenta
dataset and, therefore, we do not provide figures.

Figures 4 and 5 plot the curves of Renyi entropy for pLSA and LDA GS with different values
of hyper-parameters. One can see that the increase in the values of hyper-parameters lifts the entire
entropy curve, i.e., entropy increases on average. According to the entropy approach, the best model
is the model with minimum entropy. It follows that the optimal models among the considered ones
are pLSA and LDA GS with α = 0.1, β = 0.1. Notice that minima of these optimal models coincide.
Numerical experiments demonstrate that minimal values of Renyi entropy for Lenta dataset are
obtained with the following combinations of model parameters: (1) T = 7, β = 0.1, α = 0.1; (2) T = 9,
β = 0.1, α = 0.5; (3) T = 14, β = 1, α = 1. Analogously, for 20 Newsgroups dataset, the minima of
Renyi entropy correspond to the following combinations of parameters: (1) T = 17, β = 0.1, α = 0.1;
(2) T = 15, β = 0.1, α = 0.5; (3) T = 13, β = 1, α = 1. Instability of TM leads to the fact that entropy
minimum can be determined only with the accuracy up to±3 topics [7]. Therefore, it makes more sense
not to determine the exact minimum but to search for the location of a trough. Let us notice that values
α = 1, β = 1 lead not only to the growth of the entropy values on average but also to the horizontal
shift of the minimum. One can conclude that the optimal values of hyper-parameters for LDA GS
model with respect to Renyi entropy are α = 0.1, β = 0.1. It follows that Renyi entropy approach
allows us to determine both the optimal values of hyper-parameters and the optimal number of topics,
while log-likelihood metric allows us to determine the optimal values of hyper-parameters only.
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Figure 3. Dependence of log-likelihood on the number of topics T for different α and β (Lenta dataset).
pLSA - black, LDA GS (α=0.1, β=0.1)—orange, LDA GS (α=0.5, β=0.1)—olive, LDA GS (α=1, β=1)—gold.

Figure 4. Dependence of Renyi entropy on the number of topics T for different α and β (Lenta
dataset). pLSA—black, LDA GS (α=0.1, β=0.1)—orange, LDA GS (α=0.5, β=0.1)—olive, LDA GS (α=1,
β=1)—gold.

Figure 5. Dependence of Renyi entropy on the number of topics T for different α and β (20 Newsgroups
dataset). pLSA—black, LDA GS (α=0.1, β=0.1)—orange, LDA GS (α=0.5, β=0.1)—olive, LDA GS (α=1,
β=1)—gold.

3.4. Influence of Regularization Coefficients: BigARTM vs pLSA

We further discuss the influence of regularization parameters of BigARTM model on the results
of TM. Here we consider sparsing regularizers for matrix Φ (sparse phi) and matrix Θ (sparse theta),
where τ is regularization coefficient. Figures 6 and 7 show the behavior of log-likelihood under
variation of the number of topics for different values of regularization coefficients. Both figures show
that the increase in regularization coefficient impairs the model. The same result is obtained for the 20
Newsgroups dataset. Let us note that the curve of log-likelihood does not allow us to understand what
happens with TM if one changes regularization coefficient and the number of topics simultaneously.
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Figures 8 and 9 plot Renyi entropy curves for BigARTM model, which was run on the Lenta dataset
under variation of the number of topics for different values of regularization coefficient. One can
see that the range of coefficients [0.01; 0.1] gives small fluctuations in entropy minimum. In addition,
these minima are located in the range [7; 10] which corresponds to the human mark-up for this dataset.
However, regularization coefficient τ = 1 leads to significant distortion of the Renyi entropy curve, i.e.,
to the lift of the entire curve and to the shift of the Renyi entropy minimum. This behavior is similar to
that observed in Figures 4 and 5 for hyper-parameters of LDA GS.

Figure 6. Dependence of log-likelihood on the number of topics T for different sparse phis (Lenta
dataset): 1. pLSA—black. 2. BigARTM sparse phi (τ=0.01)—orange. 3. BigARTM sparse phi
(τ=0.1)—olive. 4. BigARTM sparse phi (τ=1)—gold.

Figure 7. Dependence of log-likelihood on the number of topics T for different sparse thetas (Lenta
dataset): 1. pLSA—black. 2. BigARTM sparse theta (τ=0.01)—orange. 3. BigARTM sparse theta
(τ=0.1)—yellow. 4. BigARTM sparse theta (τ=1)—gold.

Figure 8. Dependence of Renyi entropy on the number of topics T for different sparse phis (Lenta
dataset): 1. pLSA—black. 2. BigARTM sparse phi (τ=0.01)—orange. 3. BigARTM sparse phi
(τ=0.1)—olive. 4. BigARTM sparse phi (τ=1)—gold.
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Figure 9. Dependence of Renyi entropy on the number of topics T for different sparse thetas (Lenta
dataset): 1. pLSA—black. 2. BigARTM sparse theta (τ=0.01)—orange. 3. BigARTM sparse theta
(τ=0.1)—olive. 4. BigARTM sparse theta (τ=1)—gold.

Figure 10. Dependence of Renyi entropy on the number of topics T for different sparse phis
(20 Newsgroups dataset): 1. pLSA—black. 2. BigARTM sparse phi (τ=0.01)—red. 3. BigARTM
sparse phi (τ=0.1)—green. 4. BigARTM sparse phi (τ=1)—blue.

Figure 11. Dependence of Renyi entropy on the number of topics T for different sparse thetas
(20 Newsgroups dataset): 1. pLSA—black. 2. BigARTM sparse theta (τ=0.01)—red. 3. BigARTM sparse
theta (τ=0.1)–green. 4. BigARTM sparse theta (τ=1)—blue.

Likewise, the behavior of Renyi entropy for BigARTM on the 20 Newsgroups dataset (Figures 10
and 11) is identical to that for the Lenta dataset: the curve gets distorted when τ = 1. The minimum
of Renyi entropy correposnds to T = 10 for τ = 1 in Figure 10. Additionally, in both datasets the
distortion introduced by regularizing Φ is visibly larger than the effect of Θ. Our experiments show
the existence of a trade-off between model quality as determined by Renyi entropy, and regularization
that allows to obtain e.g. sparse or smooth topics. In BigARTM, the smallest distortions are observed
with the smallest τ which yields solutions close to the entirely unregularized model—pLSA. A similar
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result was obtained in [42], where pLSA was shown to perform better than any regularized BigARTM
model, except the one with a dictionary-based regularizer.

4. Discussion

We have proposed a method based on Renyi entropy for estimating the influence of model
hyper-parameters and of regularization on the results of TM. This method was tested on pLSA, LDA
GS, VLDA and BigARTM models. We demonstrated that higher levels of regularization and higher
values of hyper-parameters lead to lower log-likelihood and higher entropy which is a clear sign of
model deterioration. They also shift the minimum of Renyi entropy away from the optimal number
of topics as determined by human mark-up. However, since both metrics indicate the highest model
quality there where the values of α, β and τ are low, Renyi entropy (unlike log-likelihood) may be used
not only for finding the optima of those values, but also for finding an optimal number of topics, since
it is in the range of low α, β and τ that Renyi entropy performs most accurately. In addition, calculation
of Renyi entropy is simpler and faster than calculation of log-likelihood. Meanwhile, HDP does not
provide clear thresholds to select the optimal number of topics. We conclude that Renyi entropy can be
effectively used for estimating the influence of regularization coefficients and hyper-parameters on the
results of TM, determining the optimal number of topics and estimating the effect of distortion under
the condition of simultaneous change of multiple model parameters.

However, our work has some limitations. First, we test our approach only on two datasets in
European languages. We would like to mention that these datasets were selected since they have
manual markup, therefore, they can be used as ’gold standard’ datasets for testing. It would be
useful to test this approach on other datasets in different languages even if they are not marked up.
Second, our approach does not take into account the quality of topic solutions in the sense of semantic
stability. However, it is known that regularization may lead to an increase in the stability of TM [43]
that is essential for end-users of TM. This observation may lead to further development of the model
parameter selection principle and deserves a separate paper.
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