Parallel Non-blocking Deterministic Algorithm
for Online Topic Modeling

Oleksandr Frei' and Murat Apishev?

! Moscow Institute of Physics and Technology, Moscow, Russia,
oleksandr.frei@gmail.com
2 National Research University Higher School of Economics, Moscow, Russia,
great-mel@yandex.ru

Abstract. In this paper we present a new asynchronous algorithm for
learning additively regularized topic models and discuss the main ar-
chitectural details of our implementation. The key property of the new
algorithm is that it behaves in a fully deterministic fashion, which is
typically hard to achieve in a non-blocking parallel implementation.
The algorithm had been recently implemented in the BigARTM library
(http://bigartm.org). Our new algorithm is compatible with all fea-
tures previously introduced in BigARTM library, including multimodal-
ity, regularizers and scores calculation. While the existing BigARTM
implementation compares favorably with alternative packages such as
Vowpal Wabbit or Gensim, the new algorithm brings further improve-
ments in CPU utilization, memory usage, and spends even less time to
achieve the same perplexity.

Keywords: probabilistic topic modeling, additive regularization of topic
models, stochastic matrix factorization, EM-algorithm, online learning,
asynchronous and parallel computing, BigARTM.

1 Introduction

Topic modeling [1] is a powerful machine learning tool for statistical text analysis
that has been widely used in text mining, information retrieval, network analysis
and other areas [2]. Today a lot of research efforts around topic models are de-
voted to distributed implementations of Latent Dirichlet Allocation (LDA) [3],
a specific Bayesian topic model that uses Dirichlet conjugate prior. This lead to
numerous implementations such as AD-LDA [7], PLDA [8] and PLDA+ [9], all
designed to run on a big cluster. Topic models of web scale can reach millions
of topics and words, yielding Big Data models with trillions of parameters [4].
Yet not all researchers and applications are dealing with so large web-scale col-
lections. Some of them require an efficient implementation that can run on a
powerful workstation or even a laptop. Such implementations are very useful, as
shown by the popular open-source packages Vowpal Wabbit [13], Gensim [12] and
Mallet [14], which are neither distributed nor sometimes even multi-threaded.
A similar optimization problem and its distributed implementations exist in
the Deep Neural Network area, as DNN and Topic modeling both use Stochastic

Gradient Descent (SGD) optimization. The asynchronous SGD [11] does not
directly apply to Topic modeling because it is computationally less efficient to
partition a topic model across nodes. Limited parallelizability [10] of speech
DNNs across nodes justify our focus on single-node optimizations. However,
scaling down a distributed algorithm can be challenging. LightLDA [4] is a major
step in this direction, however it focuses only on the LDA model. Our goal is to
develop a flexible framework that can learn a wide variety of topic models.

BigARTM [18] is an open-source library for regularized multimodal topic
modeling of large collections. BigARTM is based on a novel technique of additive
regularized topic models (ARTM) [16,17,19], which gives a flexible multi-criteria
approach to probabilistic topic modeling. ARTM includes all popular models
such as LDA [3], PLSA [5], and many others. Key feature of ARTM is that
it provides a cohesive framework that allows users to combine different topic
models that previously did not fit together.

BigARTM is proven to be very fast compared to the alternative packages. Ac-
cording to [18], BigARTM runs approx. 10 times faster compared to Gensim [12]
and twice as fast as Vowpal Wabbit [13] in a single thread. With multiple threads
BigARTM wins even more as it scales linearly up to at least 16 threads. In this
paper we address the remaining limitations of the library, including performance
bottlenecks and non-deterministic behavior of the Online algorithm.

The rest of the paper is organized as follows. Section 2 introduces basic no-
tation. Sections 3 and 4 summarize offline and online algorithms for learning
ARTM models. Sections 5 and 6 discuss asynchronous modifications of the on-
line algorithm. Section 7 compares BigARTM architecture between versions 0.6
and 0.7. Section 8 reports the results of our experiments on large datasets. Sec-
tion 9 discusses advantages, limitations and open problems of BigARTM.

2 Notation

Let D denote a finite set (collection) of texts and W denote a finite set (vocab-
ulary) of all words from these texts. Let ng, denote the number of occurrences
of a word w € W in a document d € D; ng,, values form a sparse matrix of
size |W| x |D|, known as bag-of-words representation of the collection.

Given an (ng,) matrix, a probabilistic topic model finds two matrices:
D = (¢ut) and O = (6;q), of sizes |W| x |T'| and |T| x |D| respectively, where
|T| is a user-defined number of topics in the model (typically |T| << |W]).
Matrices ¢ and © provide a compressed representation of the (n4,,) matrix:

Naw X Na Y Gutbra, for all d € D,w € W,
teT

where ng = ZwEW N4y denotes the total number of words in a document d.
To learn @ and O from (ng,) an additively-regularized topic model (ARTM)
maximizes the log-likelihood, regularized via an additional penalty term R(®, ©):

F(2,0) = Z Z Ndw lnz¢zut9td + R(®,0) — I(I}},a@X. (1)

deD weW teT

Regularization penalty R(®,©) may incorporate external knowledge of the ex-
pert about the collection. With no regularization (R = 0) it corresponds to
PLSA [5]. Many Bayesian topic models, including LDA [3], can be represented
as special cases of ARTM with different regularizers R, as shown in [17].

In [16] it is shown that the local maximum (@, ©) of problem (1) satisfies the
following system of equations:

Ptdw = nz%r%n(gbwtatd); (2)
OR
Dt = rﬁzoergvn (nwt + Pt 8¢wt> ;o Nt = Z NgwPtdws; (3)
deD
OR
Org = nlt()er%n (ntd + atdaetd> ; Ngd = wze:dndwptdw; (4)

_ max{z;,0}
where operator norm z; = <~
iel %:Imax{mj, }
i

distribution, n,,; counters represent term frequency of word w in topic t.

Learning of ¢ and O from (2)—(4) can be done by EM-algorithm, which starts
from random values in @ and ©, and iterates E-step (2) and M-steps (3),(4) until
convergence. In the sequel we discuss several variations of such EM-algorithm,
which are all based on the above formulas but differ in the way how operations
are ordered and grouped together.

In addition to plain text, many collections have other metadata, such as
authors, class or category labels, date-time stamps, or even associated im-
ages, audio or video clips, usage data, etc. In [19] this data was represented
as modalities, where the overall vocabulary W is partitioned into M subsets
W =W?!'U-.-UWM, one subset per modality, and in (3) matrix @ is normal-
ized independently within each modality. Incorporating modalities into a topic
model improves its quality and makes it applicable for classification, cross-modal
retrieval, or making recommendations. In the sequel we list all algorithms for
one modality, but our implementation in BigARTM supports the general case.

transforms a vector (z;);cr to a discrete

3 Offline Algorithm

Offline ARTM (Alg. 2) relies on subroutine ProcessDocument (Alg. 1), which
corresponds to equations (2) and (4) from the solution of the ARTM optimization
problem (1). ProcessDocument requires a fixed @ matrix and a vector ng, of
term frequencies for a given document d € D, and as a result it returns a topical
distribution (64) for the document, and a matrix (7i,,:) of size |d| x |T'|, where |d|
denotes the number of distinct words in the document. ProcessDocument might
also be useful as a separate routine which finds (6;4) distribution for a new
document, but in the Offline algorithm it is instead used as a building block in
an iterative EM-algorithm that finds the @ matrix.

Offline algorithm performs scans over the collection, calling ProcessDocument
for each document d € D from the collection, and then aggregating the result-

Algorithm 1: ProcessDocument(d, P)

Input: document d € D, matrix @ = (pwt);
Output: matrix (fwt), vector (6:q) for the document d;

1 initialize ;g := ﬁ forallt € T}

2 repeat
3 Ptdw = norm(qzﬁwtOtd) for allwedandteT;
teT

4 Orq = n%r%n(zwed NdwDtdw + tha%%) forallt € T

5 until 64 converges;
6 Mt ‘= NdwPtdw for all w € d and t € T

Algorithm 2: Offline ARTM

Input: collection D;

Output: matrix @ = (Pwt);

initialize (¢wt);

create batches D := D1 LU D2 -+ U Dp;
repeat

(nuwt) == Z Z ProcessDocument(d, ®);

AW N =

— OR .
5 | (duwe) = norm(nwe + du)

6 until (¢:) converges;

ing (7,¢) matrices into the final (n,:) matrix of size |W| x |T|. After each scan
it recalculates @ matrix according to the equation (3).

At step 2 we partition collection D into batches (Dy). This step is not strictly
necessary for Offline algorithm, but it rather reflects an internal implementation
detail. For performance reasons the outer loop over batches b = 1,...,B is
parallelized across multiple threads, and within each batch the inner loop over
documents d € Dy is executed in a single thread. Each batch is stored in a
separate file on disk to allow out-of-core streaming of the collection. For typical
collections it is reasonable to have around 1000 documents per batch, however
for ultimate performance we encourage users to experiment with this parameter.
Too small batches can cause disk 10 overhead due to lots of small reads, while
too large batches will result in bigger tasks that will not be distributed evenly
across computation threads.

Note that ;4 values appear only within ProcessDocument subroutine. This
leads to efficient memory usage because the implementation never stores the
entire theta matrix @ at any given time. Instead, 0y values are recalculated
from scratch on every pass through the collection.

Fig. 1 shows a Gantt chart of the Offline algorithm. Here and in the sequel
Gantt charts are built for a single EM-iteration on NYTimes dataset® (|D| =
300K, |W| = 102K) with |T'| = 16 topics. ProcessBatch boxes corresponds to the

3 https://archive.ics.uci.edu/ml/datasets/Bag+of+Words

Main
Proc-1 [INENANRNRENENRRNRRANNRNNNNRARARNRRARNRARNANANNENNR
Proc-2 -.-
Proc-3 III
Proc-4 [INNNNNEN
Proc-5 [IINNERNEENN
Proc-6 [NNNENRRRNENNEN

B Batch processing 1 Norm

Fig. 1. Gantt chart for Offline ARTM (Alg. 2)

time spent in processing an individual batch. The final box Norm, executed on
the main thread, correspond to the time spent in the step 4 in Alg. 2 where n,,;
counters are normalized to produce a new ¢ matrix.

4 Online Algorithm

Online ARTM (Alg. 3) generalizes the Online variational Bayes algorithm, sug-
gested in [6] for the LDA model. Online ARTM improves the convergence rate of
the Offline ARTM by re-calculating matrix @ each time after processing a certain
number of batches. To simplify the notation we introduce a trivial subroutine

ProcessBatches({ Dy}, ®) = ZZ ProcessDocument(d, P)
Dy deDy

that aggregates the output of ProcessDocument across a given set of batches at
a constant @ matrix. Here the partition of the collection D := Dy LI Dy LU --- U
Dp into batches plays a far more significant role than in the Offline algorithm,
because different partitioning algorithmically affects the result. At step 6 the
new n'h! values are calculated as a convex combination of the old values n?,
and the value 7!, produced on the recent batches. Old counters n!, are scaled
by a factor (1 — p;), which depends on the iteration number. A common strategy
is to use p; = (19 +)", where typical values for 7y are between 64 and 1024,
for kK — between 0.5 and 0.7.

As in the Offline algorithm, the outer loop over batches Dy ;_1y41,- .., Dy; is
executed concurrently across multiple threads. The problem with this approach
is that none of the threads have any useful work to do during steps 5-7 of the
Online algorithm. The threads can not start processing the next batches because
a new version of @ matrix is not ready yet. As a result the CPU utilization stays
low, and the run-time Gantt chart of the Online algorithm typically looks like in
Fig. 2. Boxes Even batch and Odd batch both correspond to step 4, and indicate

Algorithm 3: Online ARTM

Input: collection D, parameters n, 1o, K;
Output: matrix @ = (dwt);

create batches D := D; U D2 U---U Dpg;
initialize (¢%;);
fori=1,...,|B/n] do
(Riy) = ProcessBatches({Dy(i—1)4+1,- -+, Dyi}, &7 1);
pi = (10 +1)7";
(mi) i= (1= po) - () + pi - ()
(é1wt) = norm(nie + diuy' 5o);

N 0 A W N

0 s. 4 s. 8 s. 12s. 16s. 20s. 24s. 28I s. 32s. 36s.

VESEU (N U I A |
Proc-1 IR WA NN NN NN 0D WA
Proc-2 Il N NN NN NN HR 0RO
Proc-3 [l IR N NN NI 1R HR WN]
ProcallHI NI A D NI MR
Proc-5 [l L W WA MR NN NN NN 0N NR ND HR WO
Proc6 MMM NI BENNNNMN

B 0dd batch B Even batch I Norm Bl Merge

Fig.2. Gantt chart for Online ARTM (Alg. 3)

the version of the @' matrix (even i or odd 7). Merge correspond to the time
spent merging n.,; with 7,,;. Norm is, as before, the time spent normalizing 1.,
counters into the new ¢ matrix.

In the next two sections we present asynchronous modifications of the online
algorithm that result in better CPU utilization. The first of them (Async ARTM)
has non-deterministic behavior and few performance bottlenecks. The second
algorithm (DetAsync ARTM) addresses these problems.

5 Async: Asynchronous Online Algorithm

Async algorithm was implemented in BigARTM v0.6 as described in [18]. The
idea is to trigger asynchronous execution of the Offline algorithm and store the
resulting 7,,; matrices into a queue. Then, whenever the number of elements in
the queue becomes equal to 7, the Async algorithm performs steps 5-7 of the
Online ARTM (Alg. 3). For performance reasons merging of the f,,; counters
happens in a background by a dedicated Merger thread.

First problem of the Async algorithm is that it does not define the order in
which 7.,,; are merged. This order is usually different from the original order of

Os 4s 8s 12s 1|6s 2(I)s 24|ls 2|85 32s 36s

T T T T T T
Merger | IO OO0 A U R
i NNNRRNENNRRNERRNEND

Proc-1 I NNNNEN

Proc-2 l..ll

Proc-6 NNNNENNERNNNRNNERRRNNRNRNNNNNEIENRNRN RN NN NN

B 0dd batch B Even batch 1 Norm
B VMerge matrix M Merge increments

Fig. 3. Gantt chart for Async ARTM from BigARTM v0.6 — normal execution

Os 4|s 8s 1|2s lflis 2(I)s 24s 2|8s 32s 3E|3s

| | | |
I T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1
Merger R 1NN AT A A
Proc-1 [INNENEN NN AN NNNR 0 NN NNNENDEN N DN DD NN
Proc-2 NN NERN NENAN NUNNNRNNEN NN NN AN AN NROED R
Proc-3 [NENN NNANNN NN NN NNRN NN NN AN NON ROEN DDR
Proc-4 INNNNEN NRNN NN N N NN NEND DN NENRNEN R O
Proc-5 INENEIN NR NN NANN DN AN N OND NNDN R RO IR
Proc-6 Il N NN NN NN NRNN NN AN NN NNEEN RRERN

B 0dd batch B Even batch I Norm
Bl Merge matrix M Merge increments

Fig.4. Gantt chart for Async ARTM from BigARTM v0.6 — performance issues

the batches, and typically it changes from run to run. This affects the final &
matrix which also changes from run to run.

Another issue with Async algorithm is that queuing 7,,; counters may con-
siderably increase the memory usage, and also lead to performance bottlenecks
in the Merger thread. In some cases the execution of the Async algorithm is
as efficient as for the Offline algorithm, as shown on Fig. 3. However, certain
combination of the parameters (particularly, small batch size or small number
of iterations in ProcessDocument’s inner loop 2-5) might overload the merger
thread. Then the Gantt chart may look as on Fig. 4, where most threads are
waiting because there is no space left in the queue to place n,; counters.

In the next section we resolve the aforementioned problems by introducing
a new DetAsync algorithm, which has an entirely deterministic behavior and
achieves high CPU utilization without requiring user to tweak the parameters.

Algorithm 4: DetAsync ARTM

Input: collection D, parameters n, 1o, K;
Output: matrix @ = (dwt);
1 create batches D := D; U D2 U---U Dpg;
2 initialize (¢%,);
3 F' := AsyncProcessBatches({D1, ..., D,}, ?°);
4 fori=1,...,|B/n] do
if i # [B/n] then _
L F**! .= AsyncProcessBatches({ Dyi+1, - - ., Dyitn}, & 1);
(k) = Await(F?);
pii= (ki) |
(awe) = (1= pi) - (') + pi - (e);
10| (dhe) = norm(niue + 6l 535);

© N o w

Os 4s 8s 12s 16s 20s 24s 28s 32s 36s

Proc-6 HNNNNNNERNNNNNRNRNRRNRNNNNRNNNNRNRNNR RN NAR

E 0dd batch B Even batch 1 Norm Hl Merge

Fig.5. Gantt chart for DetAsync ARTM (Alg. 4)

6 DetAsync: Deterministic Async Online Algorithm

DetAsync ARTM (Alg. 4) is based on two new routines, AsyncProcessBatches and
Await. The former is equivalent to ProcessBatches, except that it just queues the
task for an asynchronous execution and returns immediately. Its output is a
future object (for example, an std::future from C++11 standard), which can be
later passed to Await in order to get the actual result, e.g. in our case the 7,
values. In between calls to AsyncProcessBatches and Await the algorithm can
perform some other useful work, while the background threads are calculating
the (f,¢) matrix.

To calculate 7%h! it uses $*~! matrix, which is one generation older than ¢*
matrix used by the Online algorithm. This adds an extra “offset” between the
moment when @ matrix is calculated and the moment when it is used, and as
a result gives the algorithm additional flexibility to distribute more payload to
computation threads. Steps 3 and 5 of the algorithm are just technical tricks to
implement the “offset” idea.

Queue Processor threads: A Queue
I Nwt
Dy} ProcessBatch(Dy, @) ()

—_— DJ& 2

Dy "’|Wt
Merger thread:
sync)—» Accumulate f,; <
Recalculate @u:

Fig. 6. Diagram of BigARTM components (old architecture)

MasterModel

Processor threads:

| FitOffline({Dy}) | Dy, = LoadBatch(b)
i FitOnline({D,}) ProcessBatch(Dy,u)

—Transform({D,}}»| C Yy
Main thread:

Recalculate qu:

Fig. 7. Diagram of BigARTM components (new architecture)

Adding an “offset” should negatively impact the convergence of the DetAsync
algorithm compared to the Online algorithm. For example, in AsyncProcessBatches
the initial matrix @° is used twice, and the two last matrices L8/7 1 and L5/7]
will not be used at all. On the other hand the asynchronous algorithm gives better
CPU utilization, as clearly shown by the Gantt chart from Fig. 5. This tradeoff
between convergence and CPU utilization will be evaluated in section 8.

7 Implementation

The challenging part for the implementation is to aggregate the n.,; matrices
across multiple batches, given that they are processed in different threads. The
way BigARTM solves this challenge was changed between versions v0.6 (Fig. 6)
and v0.7 (Fig. 7).

In the old architecture the n,,; matrices were stored in a queue, and then
aggregated by a dedicated Merger thread. In the new architecture we removed
Merger thread, and 7, are written directly into the final n,; matrix concur-
rently from all processor threads. To synchronize the write access we require
that no threads simultaneously update the same row in 7n,,; matrix, yet the data

5,000 T T T

T ; ;
| * —e— Offline \ —e— Offline
2,400 |- LA —=— Online | 4.800 |- \ —m— Online ||
1 \q —+— Async —+— Async
} DetAsync 4,600 | \ DetAsync | |
g 2,200 E
= = 4,400 |- .
3 3
~ A
4,200 | -
2,000 - 4
4,000 - .
| | | | | 3.800 | | | | | |
0 5 10 15 20 25 30 ' 10 15 20 25 30 35
Time (min) Time (min)

Fig. 8. Perplexity versus time for Pubmed (left) and Wikipedia (right), |T"| = 100 topics

Table 1. BigARTM peak memory usage, GB

|T| Offline Online DetAsync Async (v0.6)
Pubmed | 1000 5.17 4.68 8.18 134
Pubmed | 100 1.86 1.62 2.17 3.71
Wiki 1000 1.74 2.44 3.93 7.9
Wiki 100 0.54 0.53 0.83 1.28

for distinct words can be written in parallel. This is enforced by spin locks I,
one per each word in the vocabulary W. At the end of ProcessDocument we loop
through all w € d, acquire the corresponding lock [,,, append 7., to n,; and
release the lock. This approach is similar to [15], where the same pattern is used
to update a shared stated in a distributed topic modeling architecture.

In our new architecture we also removed DataLoader thread, which previously
was loading batches from disk. Now this happens directly from processor thread,
which simplified the architecture without sacrificing performance.

In addition, we provided a cleaner API so now the users may use simple
FitOffline, FitOnline methods to learn the model, and Transform to apply the
model to the data. Previously the users had to interact with low-level building
blocks, such as ProcessBatches routine.

8 Experiments

In this section we compare the effectiveness of Offline (Alg. 2), Online (Alg. 3),
Async [18] and DetAsync (Alg. 4) algorithms. According to [18] Async algorithm
runs approx. 10 times faster compared to Gensim [12], and twice as fast com-
pared to Vowpal Wabbit (VW) [13] in a single thread; and with multiple threads
BigARTM wins even more.

In the experiments we use Wikipedia dataset (|D| = 3.7M articles, |W| =
100K words) and Pubmed dataset (|D| = 8.2M abstracts, [W| = 141K words).

The experiments were run on Intel Xeon CPU E5-2650 v2 system with 2 pro-
cessors, 16 physical cores in total (32 with hyper-threading).

Fig. 8 show the perplexity as a function of the time spent by the four algo-
rithms listed above. The perplexity measure is defined as

P(D,p) = exp <_711 Z Z Ndw IHZ ¢wt0td>v (5)

deD wed teT

where n =)", ng. Lower perplexity means better result. Each point on the
figures corresponds to a moment when the algorithm finishes a complete scan of
the collection. Each algorithm was time-boxed to run for 30 minutes.

Table 1 gives peak memory usage for |T'| = 1000 and |T| = 100 topics model
on Wikipedia and Pubmed datasets.

9 Conclusions

We presented a deterministic asynchronous (DetAsync) ounline algorithm for
learning additively regularized topic models (ARTM). The algorithm supports
all features of ARTM models, including multi-modality, ability to add custom
regularizers and ability to combine regularizers. As a result, the algorithm al-
lows the user to produce topic models with a rich set of desired properties. This
differentiates ARTM from the existing models, such as LDA or PLSA, which
give almost no control over the resulting topic model.

We provided an efficient implementation of the algorithm in BigARTM open-
source library, and our solution runs an order of magnitude faster than the al-
ternative open-source packages. Compared to the previous implementation we
eliminated certain performance bottlenecks, achieving optimal CPU utilization
without requiring the user to tweak batch size and the number of inner loops
per document. In addition, DetAsync algorithm guarantees deterministic behav-
ior, which makes it easier for us to unit-test our implementation and makes
BigARTM ready for production use-cases.

In the future we will focus on memory efficiency to benefit from sparsity of
word-topic (@) and topic-document (©) matrices, and extend our implementa-
tion to run on a cluster.

Acknowledgements. The work was supported by Russian Science Foundation
(grant 15-18-00091). Also we would like to thank Prof. K. V. Vorontsov for
constant attention to our research and detailed feedback to this paper.

References

1. D. M. Blei. Probabilistic topic models. Communications of the ACM, 55(4):77-84,
2012.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Daud, A., Li, J., Zhou, L., Muhammad, F.: Knowledge discovery through directed

probabilistic topic models: a survey. Frontiers of Computer Science in China 4(2),
280-301 (2010)

D. M. Blei, A. Y. Ng, and M. 1. Jordan. Latent Dirichlet allocation. J. Mach.
Learn. Res., 3:993-1022, 2003.

J. Yuan, F. Gao, Q. Ho, W. Dai, J. Wei, X. Zheng, E. P. Xing, T.Y. Liu, and W. Y.
Ma. LightLDA: Big Topic Models on Modest Computer Clusters. In Proceedings
of the 24th International Conference on World Wide Web, pp. 1351-1361, 2015.
T. Hofmann. Probabilistic latent semantic indexing. In Proceedings of the 22nd
annual international ACM SIGIR conference on Research and development in in-
formation retrieval, pages 50-57, 1999.

M. D. Hoffman, D. M. Blei, and F. R. Bach. Online learning for latent dirichlet
allocation. In NIPS, pages 856-864. Curran Associates, Inc., 2010.

D. Newman, A. Asuncion, P. Smyth, and M. Welling. Distributed algorithms for
topic models. J. Mach. Learn. Res., 10:1801-1828, Dec. 2009.

Y. Wang, H. Bai, M. Stanton, W.-Y. Chen, and E. Y. Chang. PLDA: Parallel
latent Dirichlet allocation for large-scale applications. In Proceedings of the 5th
International Conference on Algorithmic Aspects in Information and Management,
pp- 301-314, 2009.

Z. Liu, Y. Zhang, E. Y. Chang, and M. Sun. PLDA+: parallel latent Dirichlet
allocation with data placement and pipeline processing. ACM Trans. Intell. Syst.
Technol., 2(3):26:1-26:18, May 2011.

F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. On parallelizability of stochastic gra-
dient descent for speech dnns. Acoustics, Speech and Signal Processing (ICASSP),
2014 IEEFE International Conference on. IEEE, pp. 235-239, 201}

J. Dean, G. S. Corrado, R. Monga, K. Chen, M. Devin, Q. V. Le, M. Z. Mao,
M.-A. Ranzato, A. Senior, P. Tucker, K. Yang, A. Y. Ng. Large Scale Distributed
Deep Networks. NIPS, pp. 1223-1231, 2012.

R. Rehifek and P. Sojka. Software framework for topic modelling with large
corpora. In Proceedings of the LREC 2010 Workshop on New Challenges for NLP
Frameworks, pp. 45-50, Valletta, Malta, May 2010.

J. Langford, L. Li, and A. Strehl. Vowpal wabbit open source project. Technical
report, Yahoo!, 2007.

A. K. McCallum, A Machine Learning for Language Toolkit.
http://mallet.cs.umass.edu, 2002.

A. Smola and S. Narayanamurthy. An architecture for parallel topic models. Proc.
VLDB Endow., 3(1-2):703-710, Sept. 2010.

K. V. Vorontsov. Additive regularization for topic models of text collections. Dok-
lady Mathematics, 89(3):301-304, 2014.

K. V. Vorontsov and A. A. Potapenko. Additive regularization of topic models.
Machine Learning, Special Issue on Data Analysis and Intelligent Optimization,
volume 101(1), pp. 303-323, 2015.

K. Vorontsov, O. Frei, M. Apishev, P. Romov and M. Dudarenko. BigARTM: Open
Source Library for Regularized Multimodal Topic Modeling of Large Collections.
In AIST’2015, volume 542, pp. 370-381, 2015.

K. Vorontsov, O. Frei, M. Apishev, P. Romov, M. Suvorova, A. Yanina. Non-
bayesian additive regularization for multimodal topic modeling of large collections.
In Proceedings of the 2015 Workshop on Topic Models: Post-Processing and Appli-
cations, pp. 29-37. ACM, New York, USA, 2015.

